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SUMMARY

The present study, addresses itself to the problem of. designing an,

automated system for instruction in programming, and also to the study

of problem-solving behal or, as exhibited by students using a CAI course

in computer programming.

The study uses computr programs written by 4o college students

during the winter, and spring
l

quarters of 1972 as part of a CAI course

in AID (Algebraic Interpretive Dialogue), an algebraic language similat

to TASI0. The course is self-contained and consists of 50 tutorial'

lessons described in detail in Friend (1973) .

The programs analyzed were written as solutions to 25 prOgramming

problems from the course; 747 solutions containing 7063 commands were

analyzed. The distribution of the data over problems and over students

is discussed,: Problem difficulty and diversity of student solutions are

also discussed in detail.
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CHAPTER I

Introduction

One of the major design problems in implementing computer-fiesisted

instruction (CAI')'courzeo in computer programming is that 9,,f analyzing

A

student - written programs in real time. An instructpnal programeapab

of providing response-sensitive, specific corrective instruction for

student programming efforts should have several attributes, including

the ability to identify overt errors and to deliver unambiguous error

.
messages, the ability to determine, whether:or not a ttudent's program

is a correct solution, and the ability to deterMine from a partially

written or nonfunctioning program the strategy preferred by the student

and to give assistance on that basis.

The first of these attributes--the ability to identify overt errors

to deliver the appropriate messages--is Usually seen as one of the

fun ns of the compiler or interpreter. Syntax errors and a few kinds

of sema c.errors fall in this category. Overt semantic errors that

are proble . ependent Ouch as the use of an incorrect algebraic formula)

cannot be rele ted to the interpreter; they must be handled by a rOutine

that has access to' urriculum data. However, no 'perfect' algorithm for

i

the detection of problem-dependent erro s can be written, and en 'ideal

programming consultant' of the type dei cribed above cannot be unambiguously

defined.

Similarly, an algorithm that provides the second 'ideal' attribute,

the ability to determine the correctness of astudent's solution, does

not exi'st. It may be possible, however, to design a strategy that

2



usefully approaches this goal, for practical purposes, and it is one of

the aims of this study to investigate how close such a.heuristic solution

might come.

As for the third desired attribute of an ideal programming consultant--.

the problem of guiding a student along his chosen path--the problem it-

self is poorly defined and the final chapters of this report (in which a

study of the diversity of correct solutions is presented) attempt to

provide a greater understanding of the problem and to present a research

method and results may lead to a workab e solution.

The present study add sses itself to he problem of designing an

ogramming, and also to the study,.automated system for instruction

of problem-solving behavior, as exhibited by stUdente.using'a CAI course,

in computer programming.

The study uses computer progranT written by 40 college students

during the winter and spring quarters of 1972 asvart or a CAI course

in AID (Algebraic Interpretive Dialogue), an algeb2Tic language'similar

to BASIC. The course is Aelf-contained and consists of 50 tutorial

lessons described in detail in Friend (1973a).

The AID course consists of two computer programs, one that presents

,

instructional material to the student, and a second, the AID interpreter,

which the student uses when writing and debugging his own AID programs.

Th latter program was provided by Digital Equipment Corporation, manu-

t rer of the computer system on which the instructional system is

implemented. The interpreter was modified to allow for the'collection

. of student responses.

3



The prdgrams analyzed were written as solutions to 25 prOgramming

problems from the AID course. _They were_ chosen totest programming

ability and were expected to be among the Most difficult prOblemscip

the course--an expectation that was confirmed. Npt all studentp at-

tempted every problem; in all, 747 solutions containing 7063 programming

commands were analyzed.

The format and method of presentation are the same for all of the

problems. After an introductory instruction, a problem is stated in

simple English by the instructional-program. The student.types the

j
commend 'AU' to call the AID interpreter, and he-then attempts to write

and debug a program to given problem. During the time he uses

the AID interpreter, he is interacting. with the computer as a profds:-

sional programmer would. His attempts are not monitored by the instruc-

tional program, and he is free to use any programming devices he chooses

(he may even write programs that are unrelated to the given problem).

The only instruction he receives while using the AID interpreter is in .

the form. of error messages given by the interpreter if he attempts to

execute an'incorrectly formed command.or program. The student may write

an execute any syntactically correct AID commands and may delete, or

replace any commands: He may also file programs in disk storage or

ecall previously filed programs. When he has completed the program to

his satisfaction - -or has given up--he recalls the instructional program

by typing the cOMmand 'INST'.

The instructional program, which does not have access to the

student's program nor the ability to analyze it, attempts to determine

whether the solution is correct by'asking for selected results obtained

C,
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during execution of the program. If the student's report of the per-

'..formance Of his'program indicates that the solution is correct, the

lessons continuW.""If.not, additional instruction is given and the

student may be asked to\call the-AID interpreter again for another trial.

The sequdnce of instruction is under the control of the student._

,He may work exercises in any sequence, skipping some ex mites, returning

to others for review, etc. Hence, a student may encounter a problem

several times.

The amount of instruction varies, depending both upon student per-
,

.

formance and upon the desires- of the student. Usually, after do incorrect

reeponse to an item one short corrective message is given automatically.

The student may call for additional instruction, in the form of 'hints',

by typing a question mark. Some of the hints con4in explicit helpand

occasionally even give a complete:Correct solution to the -problem..

Because of the variation of the amount of instruction interveqingbe-

tween the student's first trial at a given programming problem and

subsequent trials only the data collected during first trial have been

analyzed in detail.

Hints are also available to the student' before his first attempt

and again, some of the hints are quite explicit. (The use of hin s is

discussed, with examples, in Chapter II.) For this reason, and bec se.

/students are free to chart their own pathway through the'course, the'

amount of instruction-received before the first trial varies and affects

the proportion of correct solutions, a fact that must be kept in Mind--

when interpreting the results reported here..
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/
An illustration of astudeht's interaction with the instructional

program and the AID interpreter follows (the problem is teal; the Student

hypothetical). In this exampleland throughout this report, theproblemo

and the student's` response6 are. own in upper case as they appear on

the MOdel-33 Teletyp the terminal most

The asterisk. to he left of the student'

student that the.6stem is ready to receive input. The problem shown

commonly used for the AID course.

resi3on51 signifies.tt the

below is taken from. Lesson 11 and is one of the problems used in the

research reported here.

WRITE A ROGRAM THAT WILL LIST THE

RADIUS, DIAMETER, CIRCUMFERENCE, AND

AREA OF A CIRCLE OF RADIUS R. THEN

USE THE PROGRAM FOR R = 10, 20, 30,

40, AND 50.

* ?

The instructional program states

the problem.

qhe student imme ate1y asks for

a hint....

USE THESE FopmuLAp (R STANDS FOR , ...which is given by the instruc-

, D-- 2 * R

C * 3.14159265 * R

A 3.14159265 Rt2

*AID The situdent then calls the'AID

interpreter.

tional Formulas known by

most students tire given in the

hints rather than in the problem

statements.

*SET D 2*R

Fy

The student start.; to write a

program but ijiidvertahtly omits

the step, number... .



R = ?

. *5.1 SE' D = 2*R

*5.2 SET C = 2*3.14*R

*5.3 SET A = 3.14*Dt2

*5.4 TYPE R, D, C, A

*DO PART 5

ERROR AT STEP 5.1: R = ?

*DO PART 5 FOR R = 1

'R = 1

D . 2

.0 = 6.28

A . 12.56

*5.3SET A = 3.14*Rt2

...and receives an error message

indicating that he attempted to
rn

;4c
use an iplaefined variable.

The'etudent'corrects the error and

continues to write the Program

without 'syntax errors.

The student tries to execute the

program, but fails to specify a

value for R...,'

...and receives.an error message.

The student correctly executes'

the program..

The student replaces Step 5.3 to

correct an algebraic error...

,

*DO PART 5 FOR R = 10(10)50- ...and then executes the program

10 ('

D"= 20

C = 62 8

A .

R . 20

for the values of R specified in

the problerh.



*INST After the program stop the student

calls the instructio 1\program...

WHAT IS THE CICUMFERENCE OF A ...which asks for a sele ted result.

CIRCLE WITH RADIUS 30?:

*188.4 The student reports the result he

obtained...

CORRECT, ...and is judged correct by the

instructional program. The in-

structional program used 3.14159265

as an approximation for If rather

than 3.14 as used by the student.

For this problem, any response that

agrees with the coded correct answer

to four significant digits is con-

iv

0

sideed correct.

Had the student's response to the last question indicated that his pro-

gram was not functioning correctly, the would have'been told to ask for

as many hints as he needed and then -Co try again. The algebraic forMulas

would have been repeated in the hints, with the final hint giving a

correct solution the student could copy..

Had the above work been done by a real student, all student input.

41,

between the two commands 'AID' and 'INST' would have been stored as data

by the AID i91 tc1-1,reter. .
(Other responses, including the initial request

'for a hint,-would have been Collected by the instructional program, and

are not analyzed in this report.) 'Except for characters or lines erased

by the student immediately afterthey'are typed, every character typed

8



by the id<ent is recorded. In a dition, a small amount of bookkeeping

(
4

inforMatiOt--the student's ident fication, the problem number and the
,r

Lei

dateand, time; -is stored with each data block.

The data are presented in some detail:in Chapter III, following the

desdriptiOn-ofthe programming problems in Chapter II. The distribution

of the date over problems and over students is discussed, summary sta-

tistics of the n of AID commands' typed and the number of commands

executed are given, and-thenuMber o occurrences of different kinds of ,

AID commands Is reported and compared with the predicted-proportions of

the kinds of comMands%.

.In theeremaining chapters, two different kinds of analysis are

presented. DisctssiCri of,prOlem di fiCdlty occupies Chapters IV, Vf

and VI. Chapter IV describes seve al methods, for determining the pro-

portion of correct and partially correct. solutions, and derives the

Statistics that are used later,in the development of formulas for

:-measuring problem difficulty; the distribution of correct solutions is

also discussed. Chapter V reports an analysis of overt errors. Errors

are-classified as either syntactic or semantic,'and each of these classes -

is further subdivided. The distribution of errors over students is shown,

and, a measure of error rates developed. Both the number of errors and

the error'rates are used in measuring problem difficulty. In Chapter VI,

19 measures of problem difficulty are defined, and the correlations

between pairs of measures are-given. Ten characteristics of the problem

that might affect problem difficulty are discussed and measured. These

ten characteristics' were used as independent variables in stepwise

multiple linear regressions from which linear formulas for_ predicting



problem difficulty were developed. The analysis of problem difficulty i

reported is similai to that in Moloney (1972) of proofs written by stu-

dents in a CAI course in-lpgic.

The second kind of analysis is a study of the diversity. of studeht

solutions, and, in this I am, indebted to Dr. Michael Kane '(l972) for the

methods that he developed for a similar analysis of prpofs produced by

students in the. CAI logic course. The use of equivalence relations

reported hire is adapted from Kane but the method of measuring diversity

is somewhat different frp Kane's method of measuring variability of

student-written proofs.

Equivalence of programs is discussed in Chapter VII: Four defini-

tions of equivalence are given, and the 551 correct and nearly correct

solutions found in the data are classified by each of the four definitions.

In Chapter VIII, four measures of diversity of solutions are defined, and

the effect on diversity of several characteristics of the problems and

the 'Curriculum is investigated. Stepwise multiple linear regressions

were then used to develop linear formulas for the prediction of diversYty.

The final chapter summarized the findings of this study and discusses

their implications.

10



At.

It. CHAPTER

Description of Prog amming Problems

The 25 programming problems used for this study are displayed below,

together with expected co rect solutions. The solutions given are 'those

anticipated as the most 1* ely correct solution to each problem.. (Th

chapter closes with a dis ussion of why these solutions were chosen.)

The programs written by students (Appendix A) are discussed in Chapters

VII and VIII.

Although_ comments on the context in which each problem appeared are

included, there are-no explanations of the AID programs: A description

of the language is given in Friend (1973). Each problem is identified

by the lesson number and.the problem used in the course; the identifier

L 16-4, for example, refers to Lesson 16, Problem 4. The optional hints

are shown following the problem statement. A student who asked or a

hint received the first hint listed. A second request brought the 'Second

hint and so on until the hints were exhausted.

L 5-30: 1 CENTIMETER = .3937 INCHES. CONVERT THE FOLLOWING LENGTHS

TO CENTIMETERS:
6.9 INCHES
7.445 INCHES
23.9753 INCHES

Hint #1:
X CENTIMETERS = Y INCHES /.3937

Hint #2':

TO CONVERT 5 INCHES TO CENTIMETERS, DIVIDE 5 BY 3937.

Correct solution:
SET K = .3937
TYPE 6.9/K, 7.445/K, 23.9753/K

11 7



Technically, Problem L 5-30 is not a programming problem, because the

concept of a stored program is introduced later, and the student is

expected to use direct (immediately executed) commands to solve the

problem. Only two AID commands, TYPE and SET, have been introduced by

Lesson 5, and those only in their direct form. When the student'S

solutions were graded for this stlidyia SET command was not required,

since this was not requested in theproblem statement.

L 8-9: USE A "LET" COMMAND TO DEFINE A FUNCTION THAT GIVES THE

RECIPROCAL OF X. USE YOUR FUNCTION TO FIND THE RECIPROCAL OF

119.4
.

67.3t3
6 + 4

Hint #1:
THE RECIPROCAL OF X IS l/X.

Hint 02:
USE THE COMMAND

LET R(X) = 1/X
TO DEFINE THE FUNCTION.

#3:
USE THESE COMMANDS:

LET R(X) 1/X

TYPE R(119.4)
TYPE R(67.3t3)
TYPE R(6' -4 4)

Correct solution:
LET F(X) = 1/X
TYPE F(119.4)
TYPE F(67.3t3)
TYPE, F(6 4 4)

This p oblem is more nearly a 'programming problem' than the preceding

one, s ce it requires the use of a stored formula as a specification

of an Eqgorithm. The use of the LET command was introduced in Lesson 8,

and thiejs the second problem in which students were required to use

such a command. Unless a student defined and used a function for this

problem, his solution *Web considered incorrect since the problem state-

ment specified that a LET command was to be used....

L 8-27: DEFINE A "VOLVME" FUNCTION THAT WILL GIVE THE VOLUME OF A

CYLINDRICAL TANK OF RADIUS R AND HEIGHT H. (VOLUME . 3.1416 TIMES

1 &I
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THE RADIUS SQUARED TIMES THE HEIGHT.)
FIND THE VOLUME OF 2 TANKS:

TANK 'A IS 57.5 FEET HIGH AND HA A RADIUS OF 18.6-FEET.

TANK B IS 65.4 FEET HIGH AND Ti RADIUS IS-19:3 FEET.

Hint #1:
UrTHIS COMMAND TO DEFI

LET V(R, H) 16*Rt2*H
"VO "FUNCTION :

Hint #2:
AFTER THE VOLUME' FUNCTION IS DEFI D. -USETHIS COMMAND TO FIND

THE VOLUME' OF TANK A:

TYPE V(18.6, 57.5)

Correct solution :
LET V(R,H) = 3.1416*Rt2*H
TYPE V(18.6,57.5), V(19.3,6 .4)

This is the first problem in wh h a function oftwo variables is used..

Note that the formula for the volume of a right cylinder is given in

the problem statement; formulas that are likely to be known by most.'

students (e.g., area of 'a circle) are not ordinarily given-in the

problem, but are given in the optional hints..
r /

L 8-28: DEFINE A FUNCTION TO CONVERT DEGREES FAHRENHEIT TO DEGREES

CENTIGRADE. THEN CONVERT THESE TEMPERATURES TO CENTIGRADE:
0, 10, 32, 72, 212

Hint #1:
TO CONVERT TO CENTIGRADE SUBTRACT 32 AND MULTIPLY BY 5/9.

Hint #2:
DEFINE A "CONVERSION.TO CENTIGRADE" FUNCTION LIKE THIS:

LET c(F) 5/9(F - 32)
WHERE F STANDS FOR "DEGREES FAHRENHEIT."

Correct solution:
LET C(F) 5/9(F - 32) 4

TYPE C(0), C(10), C(32), C(72), C(212)

This problem is similar to L 8-9, which also required the use of a

function of one variable, although here the formula is somewhat more

complex.

13
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L 9-3: WRITE A FUNCTION I( A, B) THAT WILL FIND THE LENGTH OF THE

HYPOTENUSE OF A RIGHT TRIANGLE IF THE LENGTHS OF THE OTHER TWO SIDES

ARE GIVEN BY A AND B. TEST YOUR FUNCTION ON THESE TRIANGLES:

1. A = 3, B = 4
2. A = 12, B. = 12
3. A . 1/2, . 3/4

4. A = 9, B= 13.2

Hint #1:
THE HYPOTENUSE OF A RIGHT TRIANGLE IS EQUAL TO THE SQUARE ROOT OF

THE sqm OF THE SQUARES OF THE OTHER TWO SIDES.

Hint 0'2:
HYPUONUSE = SQUARE ROOT( (SIDE A)12 + (SIDE B)12)

Correct solution:
LET H(A, B) = SQRT(Af2 + Bt2)
TYPE H(3, 4), H(12, 12), H(1/2, 3/4), H(9, 13.2)

The standard functions SGN, SQRT, IP, and FP were introduc ,pd in

Lesson 9; this is the first prograMming problem that uses SQRT, and

also the first problem that allows the student to define a function

in terms of a standard function. However, since the problem did not

specify using the funetfbn SQRT, solutions that used other algebraic

formulations were also considered correct.

L 9 -8: WHEN AN TNTEGER M.IS DIVIDED BY AN INTEGER N, THERE IS A

QUOTIEN7 AND A REMAINDER. WRITE A QUOTIENT FUNCTION Q(M, N). USE

THE FUNCTION TO FIND THE QUOTIENTS FOR THESE VALUES OF M AND N:

M 9172 N 38

M - 13 N 87

M 768 N - 101

M 6480 N - 15

Hint #1:
FOR EXAMPli: 14/3 HAS A QUOTIENT OF 4 AND A REMAINDEh OF 2.

Hint #2:
USE THE IP FUNCTION TO FIND THEr:QUOTIENT.

Correct solution:
LET Q(M, N) IP(M/N) 14

TYPE Q(91r,38), Q(13,87), Q 68,101), Of6480,15)

This is the first prob1p requiring the tine of IP, the 'integer part'

function.

r
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A,

L WRITE AN INDIRECT STEP THAT WILL CONVERT MILES PER HOUR TO

FEET'.PER SECOND. THEN CONVERT ALL OF THESE TO FEET PER SECOND:

10 MILES PER HOUR
100 MILES PER HOUR
65 MILES PER HOUR
1023 MILES PER HOUR

FgJ

Hint :

IF
S

ANDS FOR SPEED IN MILES PER HOUR, THIS COMMAND WILL GIVE THE
IN. FEET PER SECOND.

s*528o/(60*60)

Correct olution:
3.1 TYPE S*5280/(60*60)
DO STEP 3.1 FOR S = 10, 100, 65, 1023

:With the introduction of the concept of stored commands and their
execution in Lesson 10, the first true Oogramming problem in the
course is presented.

L 10-19: WRITE AN INDIRECT STEP THAT WILL TYPE THE 'SQUARE ROOT OF X.

DO THE STEP FOR X = 1, 2, 3,,..., 10.

Hint:
IN THE SEQUENCE

1, 2, 3, ...,
THE INITIAL VALUE IS 1
THE STEP SIZE IS 1
THE FINAL VALUE IS' 10

Correct solution:
5.4 TYPE SQRT(X)
DO STEP 5.4 FOR X 1(1)10

This problem is similar to the preceding one, which also requires that

a single stored command be iterated several tithes'. The'instruction
intervening between these two problems explains the use of the range
specification in FOR modifiers, and it was anticipated that students

would use that device in solving this problem.

15
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111 -11: WRITE A PROGRAM THAT WILL LIST THE RADI S
CIRCUMFERENCE, AND AREA OF A CIRCLE X OF RADIUS R.

PROGRAM FOR R = 10, 20, 30, 40, AND 50.

DI ER,
USE THE

Hint:
USE THESE FORMULAS (R STANDS FOR RADIUS):

D = 2*R (D = DIAMETER)

C F 2*3.14159265*R (C = CIRCUMFERENCE)

A 2,14159265*Rt2 (A = AREA)

Correct -.1ution:
2.1 TD= 2*R
2.2 S T C = 2*3.14159265*R
2.3 S I A = 3.14159265*Rt2

2.4 R, D, C, A
DO PART 2 FOR R = 10(10)50

In Lesson 11, the student is taught how to write and execute sequences

of stored commands.' This is the first problem that requires the student

to write a pro ram consisting of more than a single command.

L 12-4: RRITE A ROGRAM THAT WILL ASK YOU FOR 3 NUM; 1S, A, B, AND C,

AND THEN GIVE YOU THE AVERAGE OF THE 3 NUMBERS. AFTE YOU HAVE TESTED

YOUR - PROGRAM USE i TO FIND THE AVERAGE OF

A = 179.053
B 23.7
C - 271.0015

Hint:
JJ

y,TOFIND THE AVERGE OF 3 NUMBERS, ADD THE 3 NUMBER:7 TU;ETHER AND

DIVIDE THE SUM 4 3.

Correct solutior:
2.1 DEMAND A
2.2 DEMAND B
2.3 DEMAN C

2.4 TYPE (A + B + C)/3
DO PART 2

The DEMAND co and haS just been introduced and this in the first

problem that gi es the student the opportunity to uoe it.

.\
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L 1
PRO
OF
US

-29:' WRITE A PROGRAM'THAT WILL CONVERT YEARS TO MONTHS. THE

RAM SHOULD ASK FOR THE NUMBER OF YEARS AND THEN PRINT THE NUMBER

ONTHS. ,

YOUR PROGRAM TO FINDTHE NUMBER OF MONTHS IN
2 YEARS
16 YEARS .

100 YEARS

2593. YEARS

Correct solution:
8.1 DEMAND Y
8.2 TYPE Y*12
DO PART 8, 4 TIMES

ai'ned iii the course. Because this

provided. Although the problem
that it was anticipate4"that
which was introduced it Lesson 12

Lesson 13 is one of seven tests cont
problem is a test item, no hints are
is similar tolProblem L 12-4, notice
students wound use a TIMES modiler,
after Problem L 12-4.

..P

L 15-15: WRITE A PROGRAM THAT WILL FIND THE SMALLER OF TWO NUMBERS

X AND Y.

Hint:
REWRITE THE PROGRAM IN PROBLEM 14 SO THAT ITXYPES THE SMALLER NUMBER

RATHER THAN THE LARGER.

TTeet_ala.14ion:
2;1 'DEMAND X
2.2- DEMAND Y
d..3 TYPE X IF X < Y
2.4 TYPE Y IF X > Y

DO PART 2

The problem immediately preceding this-one serves as an example of a

program that types the larger of two numbers. The example is identical
to the correct solution given above except that the symbols > and < are

interchanged. The conditional clause was introduced in.-Lesson 15 and,
except fot a problem that requires the student to copy a program given
in its entirety in the text, this is the first problem that uses con-

ditional commands. In grading the solutions to this problem, the
student's program is not required to provide for the case X r, Y.

17
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L 15-17: WRITE A PROGRAM THAT FINDS THE'SMALLEST OF 4 NUMBERS.

Hint: v-

CHANGERART 51 (FROM PROBLEM 16) s9 THAT IT FINDS

NUMBERS INSTEAD OF 3.

Correct solution:
7e1 DEMAND A
7.2 DEMAND B
7.3 DEMAND C
7.4 DEMAND D
7.5 SET S = A
7.6 8ET 8 )3 IF B <

7.7 SET S = C.. IF C < S
7.8 SET S = D IF D < S
7.9 TYPE "THE SMALLEST NUMBER IS"
7.95 TYPE S
DO PART 7

SMALLEST OF 4

O

This problem requires modification of a similar program (used tp find

the smallest of three numbers) given as an example in the exercise that

precedes this one in the curriculum.

L 15-18: WRITE A, PROGRAM THAT TYPES THE LARGER OF 2 NUMBERS AND THEN
vL

THE SMALTPR.

Hint:
REWRITE THE ABOVE PROGRAM SO THAT IT TYPES THE LARGER NUMBER FIRST,

INSTEAD OF THE SMALLER.

Correct tolution:
1..1DI D A

1.2 DEMAND B
-1.3 TYPE A, B IF A >*B
1.4 TYPE B, A IF B >'A
1.5 TYPE A IF A . B.

DO 'PART 1

Again, only 'a slight modification of a sample program is required'. The

text for this problem includes an example,of three steps cimilarito.

Steps 1.3, a.41 and 1.5 above, with.< in place of -Solution'S yrere

considered correct even though they failel to provide for the case A = B.

18
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L 15-21: WRITE A PROGRAM THAT WILL PRINT "SAME" IF ALL THREE NUMBERS ,

X, Y, AND Z, HAVE THE SAME SIGN. THE PROGRAM SHOULD PRINT "DIFFZRENT" :

IF THE NUMBERS DO NOT ALL HAVE THE SAME sio.

dy

CAN YOU USE A COMMAND LIKE
SET A = 1 IF X ? 0 ANDY > 0 AND Z >'0

Correct solution:
9.1 DEMAND X'
9.2, DEMAND Y
9.3 DEMAND Z
R.4 SET A = 01

5 SET A.4: 1 IF X > 0 AND Y>
9.6 SET A . 1 IF X < 0 AND y <
9.7 SET A= 1 IF X = 0 AND Y=
9.8 TYPE "SAME" IF A
9.9 TYPE "DIFFERENT" IF A = 0
DO. PART 9

O AND Z > 0
O AND,Z < 0
O AND Z 0 ,

Preceding this problem is example of a Program that. .determines

whether or not two numberthave the same sign. That problem is the

first in the course in which conjunctions are used.

L 16-4: WRITE A PROGRAM THAT WILL DEMAND A RADIUS R AND THEN CALCULATE

THE AREA OF A CIRCLE WITH THAT RADIUS. -USE TWO PARTS, ONE FOR THE MAIN.
PROGRAM AND ONE FOR AN ERROR -ROUTINE TO' HE USED IF R IS NEGATIVE.

Hint #1:
THE ARE OF A CIRCLE 3.14159265 * Rt2. '

Hint #P:
FIRST, GET THE RAPTtJ BY USING A DEMAND COMMAND.
SECOND, DECIDE WHETHER OR NOT TO GO TO THE ERROR ROUTINE.
THIRD, TYPE THE. AREA.

Correct solution:
3.1 DEMAND R
3.2 TO PART 4 IF R < 0
3.3 TYPE 3.14159265 Rt2
4.1 TYPE "A RADIUS CANNOT BE NEGATIVE"'
DO PART 3

This problem uses the branching command TO, which has
duced. An almost identical error routine is shown in

19

Just been intro-.
a precedingproblem.
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L 16-6: WRITE A PROGRAM THAT WILL TYPE 3 NUMBVte. A".131 AND C IN

NUMERIC ORDER. USE SEVERAL PARTS TO MAKE IT .EASIER TO CHECK EACH

PART.

Hint #1:-
PART 1 SHOULD FIND THE SMAMEST OF A) B, AND O, AND TIEN

...BRANCH TO PART 2 IF A IS SMALLEST.

...BRANCH TO PART 3. IF B IS' SMALLEST. .

. " .BRANCH TO PART 4 IF C IS SMALLEST.

Hint
PART 2 SHOULD BE USED it, A IS., THE SMALLEST OF A, B, AND C.

PART 2 SHOULD DECIDE 14,HICH OF 43 AND C IS THE- SMALLEST, ETC.

Correct solution.:
1.1 DEMAND A
1.2 DEMAND 13

41,, 3, DEMAND C
1.4 TO PART 2 IF A <= B AND A < = C

1.5 TO PART 3 IF B <=. A AND B < 4 C'

1.6 TYPE C, A, B IF, A < = B
1.7 TYPE C, B; ".A IF B > AF

2.1 TYPE A;; 3, .0' IF. B < C,,

2.2 TYPE A) Cy aB I' C > B

3.1 TYPE B, A, C IF A < C

3.2 TYPE B, C, A IF C > A

DO PART 1

0

This problem-is. one of the longest and perhaps the most difficult in

the entire course. The student has used TO tri;Cnly one other problem

(L 16-4 above), and no ,similar program is shown in the lesson. In

grading the solutions to this problem the, programs were expected to

function only for unequal values of/ A, 13, and C..

L 23-7: WRITE A PROGRAM THAT WILL PRINT THE MULTIPLICATION TABLE

UP TO 5 TIMES 5.

Hint:
THE PROGRAM SHOULD, PRINT SOMETHING LIKE THIS:

MULTIPLICATION TABLE
1 -2 3 I4 5.

2 4 6 , 8 10'

3 , 6 9 12 -15

Yr 8 12 16 '20'
5 10 ! 15 20 25

1
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Correct solution:
4.1 SET X = 1

,4.2 TYPE X, X*2 X*3, X*4, X*5 IN FORM 7
4.3 SET X= X+ 1
4.4 TO STEP 4.2 IF 'X < = 5
FORM 7:

4.44 411.-

,D0 TART 4

This 14' the first program t? use a loop (introducedykn Lesson 23),
it was anticipated as a difficult problem, lecauseAo similar progr
was shown previously. The student is allowed to print resultsii0tear
form rather than in the tabular form shown above.'

TE A PROGRANATHAT WILL DEMAND A VALUE FOR. N, AND WILL THEN.

ST T 1 AND COUITT:UPJO N,

4

'F EXAMPLE, IF YOU GAVE 7 AS THE VALUE FOR N, THE PROGRAM SHOULD TYPE
1

2

3

4

5

6

7

Hint:
THIS PROGRAM IS THE SIMPLEST POSSIBLE KIND OF LOOPING PROGRAM.
IF YOU CANNOT FIGURE OUT HOW TO'DO IT, YOU HAD BETTER GO BACK TO
THE BEGINNING OF LESSON 23 AND READ.ThT.EXAMPLES VERY CAREFULLY.

Correct solution:
6.1 DEMAND N
6.2 SET C = 1
6.3 TYPE C
6.4 SET C = C + 1
6.5 TO STEP 6.3 IF'C < = N
DO PART 6 It4

The use of loops iterated a variable number of times is discussed in
Lesson 24, the second lesson on loops, and this simple problbm (with
the=hplpful hint) is the first programming,pro em in the lesson.

A
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L 25-8: HERE IS A PROGRAM WITH A LOOP:

3.14SET C = 1
3.2 TYPE VC
3.3 SET C.= C + 1
3.4 TO STE1D IF,C < 8

REWRITE THE PROGRAM SO THAT YOU AAN USE A "FOR" CLAUSE,

Irect solution:
7' 1.1 TYPE 1/C

DO STEP 1.1 FOR C = 1(1)7

The equivalence of two 'methods of.iterated execution is discussed in

Lesson 25), and this is the first programming problem requiring such

a transformation.

L 265: .WRITE A PROGRAM TO CONVERT INCHES TO FEET AND INCHES, USE A

"DEMAND" COMMAND IN ALOOP.

Correct solution:
4.1 DEMAND I
4.2 SET F = IP(I/12)

SET I = I - 12*F
4.4 TYPE F, I IN FORM 4

,4.5 TO STEP 4.1
FORM 4:

to.pT, -4-4-- INCHES

DO PART 4

Since the execution of a program ,gontaining a DEMAND coMtartd can be

halted by answering t e DEMANDkwith a carriage 'retdrn, Seemingly endless

loops that incorporate DEMAND'Is are acceptable in AID programming. They

are explained in Lesson 26.

L' 29-19: WRITE .A PROGRAM TO FIND WHICH OF THREE NUMBERS A, B, AND C

IS CLOSEST TO 13/17.

Hint:
USE THE ABSOLUTE VALUE TO FIND THE DISTANCE. FIRST FIND WHETHER A OR

B IS CLOSER TO 13/17. THEN FIND IF THAT ONE OR C IS, CLOSER.

22



Correct solution:
1.1 DEMAND A
1.2 DEMAND B
1.3 DEMAND C
'1.4 TO PART 2 IF !B - 13/17! < !A - 13/17!

1.5 TO PART 3 IF !C - 13/17! < = !A - 13/17!
1.6 TYPE "A IS CLOSEST TO 13/17"
Ll TO PART 3 IF !C - 13/17! < = !B - 13/17!
2.2 TYPE "B IS CLOSEST TO 13/17"
3.1 TYPE "C IS CLOSEST TO 13/1y"

,,D0 PART 1

_Lesson 29 introduces the AID notation for absolute value, !x!, and
discusses the use of absolute value for finding disttnce between
points on the number line:" No program similar to the absve is used

in examples. This problem is probably one of the most nifficult in
the course, primarily because the obvious approach (using conjunctions)
produces commands that are too long to be correct AID commands. Solu-

tions need not provide for the possibility that two paints are at the
_same distance from the'fiked point (in fact, the ' correct' solution

shown above does not do this).

L 32-5: SET L EQUAL TO THIS LIST OF NUMBERS:
. 1, 7, 14, 2, 5, 21

WRITE A PROGRAM THAT WILL TYPE ALL OF*THE NUM S AND GIVE THEIR SUM.

THEN CHANGE THE LIST TO THE FOLLOWING AND RUN HE PROGRAM AGAIN.

5, 50, 100, 0, 1, 2

Hint #1:
USE ONE PROGRAM WITH A ZEMAND COMMAND TO SEW L EQUAL TO THE LIST.
USE ANOTHER PROGRAM TO TYPE THE NUMBERS AND GIVE THEIR SUM. GET
ANOTHER HINT IF YOU* NFj D MORE HELP:

Hint #2:
`NAT THE END OF THE EAST PROBLEM THERE IS A

D K A LIST. \THERE ARE OTHER WAYS. TO DO IT
Uga A MAIN PROGRAM AND A SUBRO

PROBLEM. THERE IS ANOTHER HINT IF YOU
2 I

Hint #3:

ROGRAM TO SET THE VALUES
AND YOU MAY TRY ANYTHING
INE FOR THE REST OF THE

0 IT.

IN THE MAIN PROGRAM - -THE COMMAND TO REPEAT THE SUBROUTINE FOR EACH
NUMBER IN THE LIST; THE. COMMAND TO PRINT THE SUM.

IN THE SUBROUTINE -- THE COMMAND TO P NT A NUMBER IN THE LIST; THE

COMMAND TO ADD THAT NUMBER TO THE SUM.
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Correct solution:
2.1 DEMAND X
2.2 SET L(I) = X
DO PART :2 FOR I = 1(1)5
3.1 SET S = 0
3.2 DO PART 4 FOR I = 1(1)6
3.3 TYPES
4.1 TYPE L(1)
4.2 SET S = S_+ L(I)
DO. PART 3

This is the first programming probldm in Lesson 32, which introduces

lists and indexed variables. This problem is quite difficult, since
the applicable strategies other than for input-are not discussed before

this prOblem is given.

L 32-8: WRITE A PROGRAM TO FIND THE AVERAGE Of THE NUMBERS IN A LIST

OF TEN NUMBERS. TEST YOUR PROGRAM ON THESE TWO LISTS:
A. -10, 0, 1, 5, -3, 28, 17, 6, 11, -7
B. -.4, 2.5, 3.1, -5.8, o, 7.1, 4, 8.9,-.2, 3.1

Hint
AVERAGE SUM OF VALUES IN LIST/ NUMBER OF VALUES IN LIST.

CorreCt solution:.
3.1 DEMAND X
3.2 SET L(I) = X
DO PART 3 FOR I = 1(1)10.
4.1 SET S = 0
4.2 DO STEP 5.1 FOR I = 1(1)10
4.3 TYPE S/10
5.1 SET S = S + L(I)
DO PART 4

This problem shouibe difficult for most students, since the pre-
ceding exercise shows an example of a program that computes the average.
of the numbers in a list of five numbers.

L 32-19:' WRITE A PROGRAM TO FIND A

30 IN A LIST OF 10 NUMBERS. TEST Y
10, 4o, 39, 19, 28, 31, 3o, 29.

D PRINT ALL THE NUMBERS LESS THAN
UR PROGRAM ON THIS LIST:
99, 16, 37

r
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Correct solution:
5.1 DEMAND X
5.2 SET L(I) = X
DO PART 5 FOR I = 1(1)10
1.1 DO PART 2 FOR I = l(1)10
2.1 TYPE L(I) IF L(I) < 30
DO .PART 1

This program is simpler than the precediiig one (L 32-8), bUt no Model

is given in the lesson. Solutions.that use < in place of < were con-

sidered incorrect.

This concludes the list of programming problems used in this study.

None-of the anticipated solutions are lengthy programs; the lipngest con-

tains 12 commands and most require two to five commands. Although many

of these problems appear simple, the students did not.find,them Se. For

this reason, solutions were not graded strictly; in some cases.programs

were considered correct even though they contained discontinuities not,

present in the expected solutions.(for example, failure to account for

'the case X=Y in Problem L 15-15)..

I turn now to a discussiqn of the construction of expected correct

solutions. The criteria used for this task were not completely objective.

The rules followed are listed in the order in which they were applied.

1. Only lexical elements and grammatical constructions that had

been previously taught were 'alloWe'dT

2. If a correct program or part of a program was shown in the

problem statement, or in one of the hints, it -was used.

3. If an applicable strategy was mentioned in the problem statement,

or in one of the hints, that strategy was used.

;.
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4. If A similar progr

the problems statement, or

or pEtrt of ,...9.1.mtiar program was shown; in,

one of the preceding four exercises it

was adopted, provided rule 2 and 3 were not violated.
1

5. If'-an applicable ew AID construction was introduced in the

, current lesson, it was used provided none of the above rules were

violated.

6. Of the correc solutions that satisfied the above requirements,

the shortest was ch sen. The shortest solution is defined as that which

requires the fewe characters for the progrmi`and the commands necessary

to execute it f r times:

The expe d correct solUtions obtained by...these rules are neither

the shortest nor the most efficient solutions, and. in a number of"cases

students p duced more elegant programs. flow well students' solutions

were pred cted is shown in Table 1. For 15 problems the expected solu=

tion was the most common correct solution; however, this was not always

the cas and for five problems, no student gave the anticipated e^luLion.

A stud -ant's solution was considered equivalent to the expected solution

if it differed by no more than optional spaces, names for variables and

step n bers. (This conception of program equivalence is the first one

discus ed in Chapter Oar and a more precise definition is given there.).
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Table 1

Comparison of Expected with Student-written

Correct Solutions

Problems for which the expected solution

was most frequent

occurred but was
not most frequent did not occur

L 5-30 L 8-9 L 11-11

L 8-27 L 8-28 L 15-21

L 9-3 L 9-8 L 29-19

L 10-12 L 15-18 L 32-8

L 10-19 L 26-5 L 32-19

L 12-4

L 13-29

L 15-15

L 15-17

L 16-4

L 16-6 *

L 23-7 **

L 24-11

L 2543

L 32-5

* The expected solution was given by only one student but r,le0

other correct solution occurred more frequently. .r

*4- The .expected solution was given by two students.
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CHAPTER III

Description of the Data

410

The dtata consists of the (recorded) work performed by 40.atudents,

on 25 programming problems. Students worked a total of 747 problems.

The distribution of number of problems attempted is shown in Figure 1.

The number ranges from five to 25, with a mean of 19. Because the ,

ft

,1971-72 AID course was student-controlled, students were permitted to

work problems in any order or to skip problems; thus, some students who

completed all 32 lessons did not attempt every problem. In addition,

several students did not complete 32 lessons, resulting in a steady

decline from the first problem to the Last in the number of.students

attempting a problem. This distribution--the number of students

attempting each problem--is shown in Figure 2. The number of attempted

solutions for a problem ranged from l4 to 38, with a mean of 30. :Because

of the high variance in the number of problems attempted by each student

and in the number of students who attempted each problem, most of the

statistics cited hereafter are given as-proportions.

The fact. that a student attempted a problem.telle u$ little about

how much work he did or how close he came to solving the problem. The

correctness of students' solutions is discussed in the.next chapter. A

good indicator of -the amount of effort expended is the number of AID

commands typed while attempting to solve a problem. A total of 7063

commandelwere typed by all students. The number of commands typed fox

a problem ranged from 1 to 72, with an average of 7.1. The average

number of commands typed for each problem is shown in Table 2.

28 r
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Table 2

Comparisons of Number of Commands Typed and Executed

for Observed and Anticipated.Solutions

Problem
number

Number

Typed in student
solutions
(average.)

L5 -30 3.7

L8-9 3.2

18-27 4.5

L8 -28 5.4

7.1

L9 -8 5.4

L10-12-

110-19 3.3

L11-11 7.7

112-4 7.8

L13 -29 6.6

L15 -15 11.2

L15 -17 13.3

1,15-18 9.1

L15 -21 15.0

116-4 9.5

L16 -6 22.6

L23-7 14:2

L24-11 1016

L25-8 5;0

L26-5 10.1

L29 -19 14.2

132-5 23.3

L32-8 23.5

62-19 16.4

Mean: 10.22
S.D.: 6.26

r ,

of Commands

Executed in
In anticipated student solutions

correct solutions (average)

2

4

2

2"

2

2

2

2

5

5

3

5

11

6

10

5

12

6

6

2

7

10

9

8

6

3.5

2.9

3.7

4.6

5.3

4.4

2.3.

2.8

5.9

6.8

4.4

7.1

10.3

7.1

11.8

7.4

14.3

11.7

8.2

3.6

8.o

7.4

14.7

415.7

12.0

a

Mean: 5.36
S.D.: 3.17

r = .834
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As one would expect, the average number oPcommands typed per

- problem vailes'cOnsiderably from.one,prOblem to the next. As shown in

.-Table 2, the average for Problem L8 -9 is1,3.4 lines, while the average

for L32-8 is 23.5 lines. A/cOmparison between- -the: average number Of

) -

commands typed and the number .of Commands used inthe.onticipated correct
_

solutions is shown in Table 2. The nUm4er of commands typed is consis-

tently greater.than, in fact almost double,'the number of commands in the

anticipated solutions. One must conclude that the students' attempts to

solve these problems were not cursory efforts. The correlation between

...expected and observed values is quite good; r = .834.

Perhapsn-more useful measure of the amount of effort expended than

the number of commands typed is the number of commands eXecuted. Of the

7063 typed commands, 5177 were executed. Thus, 1886 of the typed com-

mands--26 percent of the total--were unused, either becsOpe no attempt

was made to execute them or because they contained errors that prevented

their execution. We see in Table 2 that the number of commands in the

anticipated correCt solutions is less than the number executed, although.

the difference is not so great as that for tSrped commands. There are,

however, three problems for whicla the average number of executed commands

is less than the number used in:the anticipated solution. One would
ti

expect a higher correlation for executed commands thaz\i\for typed commands,

but it is slightly lower, :821 compared with .834.

We can characterize the commands' that constitute the data by looking

at their function as programming commandsi which may be done in two ways.

First, we can classify commands according to whether they are direct

(immediately executed) or indirect (stored) commands. Second, we can
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classify,commands according to the AID verb used. The number of-.occur-

rencesof the different kinds of commands,-utihg both meihods,of,clas
o

_

ification is shown -in-Table ; lidommand does not appear in the .data

before it is introduce4,4,41,,thedUrriculum; that is, no indirect commands

are used ;lip-fore Lesson. 10, no DEMAND commands are used before Lesson 12,

etc. With the exception of the LET'comMand, which is used heavily in

earlier problems and less in later problems, the number.Of occurrences

of a given kind of command remains fairly constant after the commandis

introduction taithough we see some large fluctUations from one problem

to the next). Thus, thcugh.the total number of commands tends to in-

crease with lesson number, the increase is due to a.greater number of

different commands used, rather than increased frequency of use. TEis

is partly due to the nature of the curriculum, in which an effort was

made to arrange problems and lessons so that a command once introduced

was used frequently thereafter. That this did not occur with LET

indicated a weakness in the curriculum, which was- subsequently'correctcd.

We turn now to a comparison of the proportions of types of commands

observed in the data and the proportions used in the anticipated correct

solutions as shown in Table 4. Looking first at the classification by

'verb (second part of Table 4) we see that the°anticipated solutions do

not contain any occurrences of DELETE'or of-the file commands, an

'therefore they cannot serve as predictors o-f the number of occurrences

of these kinds of commands. Sven so, the match between pr7edicted and

:obseryed is extremely.good. The correlation coefficient is .958.- The

only two marked discrepancies are for SET and DEMAND; there is a higher

proportion of SET commands in thezdata than in the expected solutions
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1 Table 4

Comparison of Observed and Expected ,Proportions

of Different Kinds of,Commands

Kind of Command Number of Occurrences Proportion

Observed* Expected** Observed Expected

Direct 80.1 38 45.4% 28.4%
.

.

Indirect 96.5 96 54.6% 71.6%

Total 176.6 134

TYPE 53.6 41 ' 30.1% 30.6%

SET

DEMAND
,

37.4,

21.4/

,

25

27
.

21.2%

12.1%

18.7%

20.1%

TO 8.8 '9 5.0% 6.7%

DO 33.8 . 25 1 19.1% 1817%

LET 7.5 5 4,2% 3.7%.

DELETE 4.6 2.6%

4'

)

FORM 2.5 2 1.4% 1.5%

File "commands*** 1.5 '0.8%

Unidentifiable 5.5 3.1%

Total 17.6.6 134

Mean 17.7 13.4,

S.D. 18.1 '14.8 ,

r = 958_ ,

*The observed number of occurrences of the different kinds of

commands is the total number of such occurrences divided by 4o

'(the number of.students who contributed to the data).

.
**The expected number of occurrences of the different kinds of.

commands are taken from the expected correct solutions listed,

in Chapter II. .

***USE, FILE, RECALL, and DISCARD

42
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and a lower proportion of DEMAND commands . One reason for this 3. hat

stbOents sometimes used direct SET commands as a means of input w4 as

the anticipated solutions used DEMAND. other reason that stud

un,doubtedly made fewer errors in DEMAND Mmands; the simplest of t1-4

and therefore ,retyped'themAID commands both in syntax And in semant

lesS frequently. A study either of the p bportions Of different kinds

commands used in correct solutions or of the distribution of errors

over command types would examine this hypothesis.

Studies has yet been undertaken.'

Looking at the comparison of

commands (also shown in Table 4),

the proportions of direct and in

Neither of these

we 'Aee that the anticipated cor

solutions do not function well as pred \ ctors olldthe observed pro ortions;

t

students used a much higher proportion of direct commands than di the

anticipated solutions'. ,This can be explained partly by the fact t at

direct commands play a larger role in debugging than in writing pro ram6,

and the anticipated solutions cannot be expected to 'serve as predict

of commands used tbz debugging purposes. Another rea3on fur the high

proportion of direct commands in students' work is that students fre-

quently omit the t*rep number in what was intended. Ett au indirect command..

Since the criterion for aassifying a command as eitner direct or in-

direct is the absence or presence of a step number,. these erroneous

commands were incorrectly classified.-
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CITAPTER IV

Distribution of Correct Solutions

Perhaps the sin5le most important-question to be answered by thisA

study is: How many of the students solved, the problems? Tt is-to this

question that this chapter is addressed.

In order to answer the question, one must first,..establithcriteria

for correctness; not a trivial task for ,programming problems. We could,

beg the question by referring the reader to Appendix A (which contains

a list_of all the correct. solutions found-in the data under consideration):

Any, solution in that list is correct. Thus, membership in the list'is a

sufficient condition for correctness but not a necessary one. 'Rather

than give a compete and exhaustive list of the criteria used in grading

students' work, we will give an informal description of the attributes

we looked for.

First each correct program must perform a (minimal' function. For

most probles tilis'i function is definedm by the correct solution listed in
4

Chapter II, but for a few problems, the, minimal function is,a subset of

'that anticipated, function. For example, for Problem L15-15; which asked

for a program that would find the smaller of two numbers, the function

defined by the anticipated. correct solution is

,y)

x if x <y

. -

if- x > y .

In grading students' work for,this problem, the minimal function used

was

37
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x if x <y
f
M
(x y)

if x > y .

The domain of r excludes pairs (x, x), and hence fm is a proper subset

of f
A'

The comments given on grading in Chapter II, along with the cor-

rect solutions listed there, are sufficient to imply the minimal function

that was used for each problem, so a complete list of minimal functions

is not given here.

In one case (Problem-1.5730) students were asked merely to compute

three numerical results, and any method (other than computation by hand)

that produced the three correct values waSconsidered correct, so that

the minimal function for this problem contains only these pairs. Far,

all other problems.a solution was not considered correct unless it was

a general solution; that is, the domain Of the minimal function is quite

large. In a few instances, students' prOgrams defined functions that

included the anticipated function as well as the minimal function. In

other words, the students' solutions were better than the minimal one;

for an example of this, see Sulution 19 to Probleth 23-7 (Appendix A).

The cotputational algorithm used by the student could be defined

either as a stored program or as a user-defined function, and in general,

the student used the.same device as in the anticipated sulutions. In

--either case, the students' solutions were required to.print values as

well as to compute them.

We have been discussing functions defined by programs as if they

were real-valued functions. In fact, these functions ordinarily have

,as'values text strings in which numeric values may or may not be imbedded.
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Consider, for example, Ttoblem L15-21, which asks for,a program that will
ti%

print efther 'SAME' or 'DIFFERENT' depending upon a comparison of the

signs of three numbers. Or, as another exattle A .Problem LI6-4.requires

a.subroutine to print an error message if a negative value is given as

the radius of the circle. Problem L29-19 also requires text output.

For these three problem's a student's program was considered correct if

it typed text with the appropriate dontent. Thus, for. Problem L16-41

these error messages would all be considgxed equival nt and correct:

A RADIUS CANNOT BE BE NEGATIVE.

DON'T USE NEGATIVE NUMBERS.

YOU'RE NUTS!

Such decisions about equivalence of text are, of Course, easy in hand

grading but present great difficulties to an automated, procedure for

grading programs. Other than the three problems just mentioned, the

minimal function used in grading did not include text. However, students

programs frequently provided for more than the minimal. output. Often

this was done by printing input values as well as output values. For

example, one program to convert incheS to feet and inches printed the

result in the form

27 INCHES EQUALS 2 FEET AND 3 INCHES

rather than the simpler

2 FEET AND 3 INCHES

used by most programs. In grading, the context of the output values was

ignored if it was not required by the minimal function.

In addition to computing and printing correct values, students'

solutions were also required to handle input reasonably. Input in AID

39
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programming can be managed in two ways. Using DEMAND commands, a prOgram

can request the input data it needs, at execution time. A'second method

is to store data in the iirogram before execution, by means of direct SET

Commands, a FOR modifier, or an auxiliary program that uses SET or DEMAND

commands. Using either method, a student's solution was not judged to be

correct unless it was executed correctly; for those problems that speci-
,

fied input values, the student's solution was considered,/ correct only 19.f

he executed his prpgram successfully for each specified value.

For certain problems, additional criteria of correctness were im-

posed. A problem statement might contain explicit instructions to use

a specified kind of command or programming structure; for example,

Problet L8-9 requires a LET command. as does Problem L8-27; Problem L26-5

requires a loop incorporating a DEMAND command. Requirements implied

but not explicitly stated in a problem statement are not taken as abso-

lute, however, Thus, Problem L23 -7, which asks for a program to print

part.of the multiplication table, did not require the outpur, in. tabular

form, though the use of the word 'table' implied that it should.

For a few cases the otandards described above proved inadequate in

come way, primarily for the last three problems, which required the use

of indexed variables. Solutions to such problems must be studied in

much more depth and with more data before strategies for.an automated

program check can be devised.

In checking for correct solutions, all trials for the first en-

counter with a problem were inspected until a correct solution was

found. Table 5 summarizes the performance on each problem, showing the

number of correct solutions for the first trial, and the numberIcorrect

40
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Table 5

Comparison of Performance on First Trial and All Trials

Problem
number.

Number of'Correct Solutions
Proportion Correct*

First ;trial.First trial All trials

L5 -30 17 35 .47

L8 -9 34. 36 .84

L8-27 25 29 .66

L8-28 21 28 .T62

L9-3 19 29 .59

L9-8 12 Q 19
/135'

L10-12 .27 33 .75 .

L10-19

L11-11

3o

22

34

26

.86

..7
.,

...

io

L12-4 28 34% .80

Ll3r29 21 21 .6o*

L15-15, 15 :19 :48

L15-17 18 19-.% .64

L15-18 14. 11 .41

L15-21 20 22 .69,

L16-4 24 25 .77

L16-6 7 9 .24

L23-7 12 16 .50 r
L24-11 8 8 .38

L25-8 18 28 .72

L26-5 15 17 .54

L29-19 3 3 .12

L32-5- 7 .27

L32-8 10 10 .43

L32-19 6 7 .43

427 515

*Uses number of students attempting problem as denominator.
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over all trials. Of the 747 attempted solutin 427 (57%) were correct

on the first trial and 515_(69%) were correct on some trial. The dif-

ferences between perforMance on first and subsequent trials is not great,

except for'three problems (L5 -30, L9 -3, and L9-8) in which the second

figure is 50% higher than the first. The score for each student was

computed for first trial:IT-he mean of these scores is 56%, with a range

,' from 10% to-, 92%. The distribution of students' scores is shown in

Figure 3. Two conclusions can be drawn--one, insofar as variance is an
0

*indicator, this set of programming problems was well chosen as a test,

and two, the students did not find these problems,easy. Although the

. performance of these sane students on other exercises in the AID course

has not been analyzed in detail, the average scores on all exercises in

tlit course is over 75 %, considerably higher than the 57% for the,, set of .

programming prol)Iems considered here.

The proportion correct, shown in the third column of Table 5, is

used in Chapter VI as the primary measure'of problem difficulty. Com-

paring the proportions correct for different problems, we note a range

of .12 to .86. The three must difficult problems by this criterion are

L16-6, L29-19, and L32-5. Both L16-6 and L29-19 are logically complex

.problems requiring the use of several conditional branches. L32-5 16

the first problem using indexed variables, and the fact that it is quite

difficult probably Indicates the inadequacy of the curriculum rather' than

the inherent difficulty of the problem. A more detailed study of problem

difficulty is pursued in Chapter VI.

Rather than judging solutions by a simple correct-incorrect scheme,

we found that some system of assigning partial credit was also desirable.
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Figtire 3. Distribution of students' scores.
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The one'used here is a simple count of the number of commands used in

rN

' correct or partially correct solution.0 This is not a completely satis-
,

factory system, but it foes have the virtue of providing a fairly

objective measure. Using this measure of correctness, we were able to.

determine'what proportion of the effort expended by students was useful

effort. Table'6 shows the average number of commands used in correct

and partially correct solutions for each problem. The criterion used

in tallying the Commands for Table 6 vas not dnly that /the command con -D

tribute to a correct solution, but also that the Command be executed.

Originally correct commands that were replaced by the student before

execution did not contribute to these statistics, nor did commands that

were stored but not executed.

In comparing the statistics from Table 6 with th6se In Table 2

(number of commands typed), note that less than half (3404/7063) the

commands typed were used in correct or partially correct solutiOns.

1.)

Students typed an average of 9.5 commands for the problems attempted,

but only 4.0 commands contributed tSward a correct solution. Looking at

the totals for different problems; we see that for three. problems (L29-192
.

L32 -5, and L32-19), fewer trian one - third of the typpd commando contributed'

to correct solutions. Two of thee problems are.from-Ik.luon 3 which

introduces indexed variables and agEiin we attribute this to a weakness
n 1

in the curriculum rather than to characteristics of the problems them-

selves. This supposition might be confirmed by comparisons with data

from similar problems in the 1972-73 AID course in which the lessons on

indexed variables were substantially revised.
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Table 6

Number of Commands Used in Anticipated and

Correct and Partially Correct Lolutions

Problem
number

Number of Commands

. .

4

Average Number of Commands*

Anticipated.
correct solution

Correct and partially
correct solutions

15-30.

L8-9

L8-27

L8-28

L9-3

L9 -8

L10-12

L10-19.

L11-11

2

4

2

2

2

2

2

2

5

2.2

2.7

3.1

4.1

4.0

2.0

2.1

4%0
ir

L12-4 5 4.7

L13-29
. 3'

2.7

L15-15 5 3.8

L15-17 11

L15-18 6 4.8

L15-21 ip 9.9

L16-4 5 5.8

L16-6 12 8.0

L23-7 6 .6.2

L24-11 6 5.9

L25-8 2 1.7

L26-5- 7 6.5

L29-19 10 3.7

L32-5 9 5.1

L32-8 8 10.5

L32-19 , 6 5.0

*Used 3101 typed commtinds.
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A similar'comparison can be made between the number of commands

used in corrector partially correct solutions and the number of executed

commands, which are ehown'in Table 2. .This"cemparison ismiore meaningful

than the preceding one because the commands tallied in Table 6 had to be

executed and thuswe are,comparinvthe number of executed Commands that

contributed. toward a correct solution withthe total number of executed

commands. Of the commands that were executed, two-thirds (3404/5177)

contributed toward a correct solution. For a detailed comparison, look

again at' the averages for the individual problems. We find that fewer

than half of the executed commands contributed toward Correct.solutions

for three problems: L25-8, L32 -5, and L32-19. The last two of these are

I.
the same two (quite difficul,t) problems 'from Lesson 32 for which the dis-

crepancy with commands typed was so marked. Interestingly, the other

problem, L25-8, is one of the easiest problems in the set with a proba-

bility correct of .72. Looking at discrepancies at the other end of the

scalelwe find that 90% of the executed commands contributed to correct

solutions for Problems L8-9 and L9-8. For L8-91 84% of the students

produced correct solutions on their first trial, but for L9-8 that figure

is only 35%. Obviously no simple relation exists between these different

measures and, a more detailed analysis of thipvlationships is undL.taken

in Chapter VI.

In the correct-incorrect grading we allowed only completely correct

solutions. However, relaxing these standards somewhat, we can define

anottier variable, allowing as correct those programs that are correct,

up to algebraic expressions. By disregarding algebraic errors, we can

obtain additional, possibly better, evidence of the programming difficulty

0
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represented by the different problms. The pertinent summary statistics

for this variable are shown, in TabLe 7. The number of solUtions that
+

were correct, except for .al braic errors, in shown separately froth the.*

.

,

total i& order to,emph ize the variance. The correlation between these

two measures of proportion Correct is quite high (r = .904)'.. Notice that

15 'students solved Problem L5-30 correctly, except for algebraic errors;.

this nearly equals the number who °solved, the problem completely correctly

(17), and changes the proportion Cbrrect for that problem' from .47to'.89.

Other changes are less impressive, but several others are also subs antiai:

the proportion correct 'for L9 -8 Changes from .35 to .56, for Li. 12 from

.78 to .92, and for L24.:11 from .38 to .52. For nine of the roblems,.

no change in proportion correct is achieved by modifying he definition

of correctness.

,Tn some eases the definition of the minimal nctibn,'discussed

earlier, markedly affected the measures der 'ed for proportion correct.
,

.

4

The problems that would be most noticpbly affected if the criter a were

more stringent are L15-15, L15-18, L16-6, and L29491 in all of%

the 'students were allowed to ignore t possibility%that dif in

variables mist have equal v luen: fur all four of these roblems, ewer

than half of the attemp Id noluti nn were graded correct and thin /pro-

portion would decrease nubstant ally with any increase in the st ngency

of the criteria.
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Table 7

guxber of Solutions idere Correct Except for

'Algebraic Errors (first trials)

Problem
number

L5-30

L8-9

L8-27

L8-28

L9-3

1;10-8

lL10-12

T.,10-19

41-11

-1k

Lt.3-29

L15-1'

, L15 -17 ('

L15-18

L15-21
y

,41,16-4

4116,.6

L23-7

L24-11

L25-8

L26 -5.

' L29-19

L32-5

Number of solutions
that were correct

except for algebra

Number of solutions*
that were corrector

correct exce pt for. algeb ra.
. N

Proportion
correct**

15 3.2 .889

2 33 4392

27 .711

25 .735

1 20 .625

7 19 .559

5 32 .917

2 32

0 22 ,.667

5 33 .?43

o 21 .600

1 16 o .516

4() 0 18 .643

0 11 407

0 20 .690

26 .839

1 8 .310

0, 12 .500

3 11 .524

.v 3 21 .846'

1 16 .571

1
lI

.151k

0 7 .269

(continued;
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Table 7 (cont'd)

Number of solutions Number of solutions* ,

Problem. that were correct that were correct or Propo ion

number except for algebra correct except for algebra corre t**

L32-8

L32-19

0

0

10.

6

*Sum of-the number of solutions that were correct except for algebraic

errors '(\aken from the_preceding column) and the number of solutions

that were completely correct.-

**The proportion correct for each problem is calculated by=the formula:

total number of Solutions that were corrector correct except for-

algebra-Lnumbe of students,w11.6 attempted the problems
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CHAPTER V

Errors

The primary reason for undertaking an analysis of errors was'to

provide variety in the means of measuring problem difficulty. In

<4.

tion, a study of errbrs provides insights into student Aerformance not

:obtained from examinations of proportion correct *Old distribution of

correct solutions.

We considered mainly overt errors; errors of omission are not

examined, except for failureto provide for program output. A student

may fail to solve a'problem correctly, but /at the same time make no overt

errors. If his work is corract bUt not complete, the student is not

credited with either a correct solution or any overt errors. Even more

dramatically, a.student may prOduCe a large number of commands that are

correct in the sense that they contain no. errors and yet may not be

credited with any commands that contribute to a correct solution because

his work ha-an() identifiable relation to the problem he is supposedly

sorting. Thare were a number of such instances in the data. In some

cases, the student.was clearly working-On a completely unrelated program,

e.g., on a previous problem, perhaps, or even one of his own choosing

(one student spent considerable time writing a game-playing program that

had no relation to any of the problems in the-course).

In this chapter we use two methods to derive statistics. In the

first method, all errors regardless of their source are classified by

type, and in the second, we show for each problem the number of students

who'made errors, though not..the number of errors made by each student.
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There were.1090 errors in the 7063 commands typed by students, with

, .

e
somexommands'containing more than one error. . Of the. 1090 errors, 740

(68%), were syntax errors And 350 (32%) were semantic errors. Note that

because we are concerned only with overt errors the proportion of syn-

tactic errors is probably overestimated. This method is more likely to

fail to count semantic than syntactic'errord.

Syntax errors were divided into seven major classes containing 22

sub-classes, and the distribution of errors into these classes is shown

in Table 8. Format errors, which accounted for 12% of the total, are of

four types.
5

1. Line too long (3.0%). AID commands must be contained within.

aines of 72 characters or less. If.a typed line exceeds 72 chara ters,

an error message is given by the interpreter.

2.. Omitted space (5.9%). One or more spaces are required.as de-

limiters after step numbers, after verbs, on both sides of IF, AS, -FOR,

etc.

3. Inserted space (1.6%). Spaces are not allowed before the left

parenthesis it expressions-like F(X) and F(3), where F is either a user-

defined function or a standard AID function; all of the observed errors

Were of this type. Nor are spaces allowed before the left parenthesis

in expressions like X(2) and L(1,4) where X and L are indexed variables,

but there were no occurrences of this error.

4. Visible delimiter errors (1.5%). Viable delimiters such as

commas and semicolons are required in specific commands. Some of the

errors in this subclass were errors of omission and others were errors

of substitution.
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Table 8

Classification of Syntax Errors
CI

/

Classification
0

I. Errors in Format

A. Line \too long

B. Omitted space

C. Inserted space

D. Delimiter error'.

Total

II. Transient Errors

Number of Percent of
errors total errors

22

44 5.9

12 1.6

11 1.5

89 / 12.0

3.o

A. Typographical error 80

B. Probable typographical error 36

C. Incomplete command 137

10.8

4.8

18.5

Total 253 .34.1

III. Errors in Verbs

A.- Omitted verb

1. SET '33 )4.5

2. Other 5 0.7

Total 38 5.2

B. rillipor DEMAND used directly 30 4.0

C. Incorrect 3rPrb 5 0.7

Total 73 9.9
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Table 8 (cont'd)

Classification

Number of
errors

Percent of
total errors

v,

IV. Errors in Arguments of Verbs.

A. Equationused in TYPE command 11 1.5

B. Omitted "STEP" or "PART" 24

C. Errors in algebraic expressions
.

1. Unmatched parentheses or ,
absolute value signs 15 2.0

2. Other 20 2.7

Total 35 11.7

.

V.

D. Omitted quotation marks ,

4' Total

Errors in Multiple Form of: Argument

A. Used X(1,213) for X(1),x(2),x(3)

B. Used DEMAND or SET with multiple
argument

C. Omitted second occurrence of

7

77

23

i.o

io.4

1.1

3.1

"PART" or "STEP" 7 1.0

Total 38 5.2

VI. Errors in Modifiers

A. Misplaced,IF clause 6 0.8

B. Error in logical expression 7 1.0

C. 'Modifier used with wrong verb

1. FOR with,TYPF 16 2.1

2. Other 1.0

Total 23 3.1
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Table 8 (cont'd

Number of Percent of

Classification errors total errors

D. Used FOR with more than
one variable

Total

34 4.6

70 9.5

VII. Miscellaneous 140 18.9

TOTAL 74o 100.0

9
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The next three subclasses are contained in the class called

'transient errors'. These are typographical .and related errors, and

accounted for 34.1% of all syntax errors.

5. Typographical errors (10.8%). A strict criterion was used for

this subclass. The errors include (a) doubling of letters (PARRT for

PART), but not doubling of nonalphabetic charactersl (b) omitting of

letters (ML11$ for DELETE), but only for words containing ats least three

other letters in correct sequence so that the .word could be identified

unambiguously, (c) substituting L for 1, and (d) substituting anychar-

acter for another character with an adjacent keyboard position, provided

that both characters were not digits and that no other similar substitu-

tion resulted in an identifiable expression with a different semantic

value (for example, FO can bp taken as a typographic substitution for

DO or for TO since F is adjacent to both T and D on the keyboard; hence,

this error was not classified as a typographical error).

6. Probable typographical errors (4.8%). This class includes the

typographical errors that did not satisfy the above criterion. Cate-

gorizing these errors was guided in'part by the student's subsequent

action. For example, if a student typed a line like

FO PART 7

and immediately replaced it (before execution) by

3.15 TO PART 7

the error was included here.

7. Incomplete commands (18.5%). If a line is an initial segment

of some correct AID command, it was counted as an error in this class.

In most instances, it appeared that the student changed his mind in
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midstream and, rather than,type arierase command to erase the line, he

typed the RETURN key and then retyped the command making the desired

correction., If these errors are considered Momentary aberrations in the

same sense:as typographical errors, rather than as semantic errors, they

account, f'or 34% of all syntax errors. Together with subclasses (1) and

(2), which are also transient errors, the total reaches 43%, a substantial

portion of the syntax errors.

Errors in verbs, which constitute 9.96 of the syntax errors, are

divided into three subclasses:

8. Omitted verbs (5.2%). Because this. occurred much more fre-_

quently for SET than for all other verbs, this subclass was subdivided

to emphasize that difference. Of the 5.2% of the syntax errors that are

due to omitted verbs, 4.5% are omissions of SET. The SET command, unlike

any other AID command, can be given without the verb but only when used

directly. To illustrate this distinction,

X =7

may be used in place of

SET X 7,

but

cannot replace

3.5 X = 7

3.5 SET x = 7.

We shall see other evidence of such logical 'overgeneralization' again

in this discussion.

9. TO or DEMAND used directly (4.0%). Of the commands taught in

the first 32 lessons of the AID course, TO and DEMAND are the only two
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,that cannot be Used directly. Although the error message is specific

and unebbiguouw(DON'T'DGIVE THIS cb .1MAND. DIEbTLY), there were 30 such'

errors, .'11 reasonable explanation for many;of these errors is th t the

.

student 'forgot to type a step numbRr; 'ebbs explanation i pported by

t he fact that the errors occurred more frequentlyviii.the first step of

a program (with'DEMANL) than elsewhere, givi one the impression that .

the student's concentration on.the soma c structure of the program was .

sufficiently intense tyi preclude mipor syntactic considerations. This
"

kind of error is related*to errors in the first subclass of semantic
.0

erxors. and is me ntioned again when those errors are discussed.

10. Incorrect verbs (0.7%). We expected thSt there would be more

errors due to incorrect verbs than the five found in the data. The

incorrect verbs found include DELETE for DISCARD, PRINT for TYPE, etc.

There was no evidence ofmiSspellings other than typographical errors,
,

which are not in this class.

The fourth category of syntax errors includes those made in argu-

ments of verbs. These accounted for 10.4% of the .syntax errors, somewhat

more than the 9.0 for errors in verbs, and less than either the 12.0%

for format errors or the 34.1% for transient errors.

11. Equation Used as erguments'for TYPE (1.5%). Technically,

command like

TYPE Y = 2 * X
, 41.

is not a,syntax error%since logical expressions can be used as arguments

for TYPE (and will return either TRUE or FALSE). However, thiR'form of

the TYPE command was-hot taught in the first 32 lessons, and other

evidence of the data indicates that students were incorrectly using
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this command as a combination of

SET Y. 2 * X

TYPE Y.

A

All such instances caused an error message that an undefined variable

had been used, so .that if one takes a more rigid -view of the classiftea-

tion scheme, these errors should be grdUped into the first subclass of

semantic errors. We felt that:to do so would be misleading even though

correct.

are:

12. Omitted STEP or PART (3.2%).. Some examples of these error/

DO 3.1

TO 4

for )100 STEP 3.1

for TO PART 4

. DELETE 5 for DELETE PART 5.

P.(Since a command like DO 3.1 cannot be interpreted as other than STEP

3.1, one might reasonably fault the interpreter rather than the student.

,

The same complaint can be made about many other errors deaciibed here.)

13. Errors in algebraic expression (4.7%). only k,yntactio errors

are included here. Semantic errors in algebraic exprsno are diwussed

later. Nearly half (15 out of 35) of these
a

!rrors weFe in grouping, dew'.

scribed in Table d ac 'unmatched parenthee's or aboolute vahle LA.gn0.

In many cases these errors had more the appearance of typographical than

of conceptual errorC, as in

TYPE F(3.5)).

Among the other errors in algebraic expression, one that occurred several

times was the cmtssion of the 'multiplication symbol *.
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v/
14. mitted quotation marks (1.0%). Because of numerous use-mention

error that oc urred during pilot testing of the AID course, we expected
. ,

a higher rate 'of these errors. In fact, students used text strings more

often and made fewer errors than we expected.

The next three subclasses of syntactic errors also occurred in argu- ft

it

ments of verbs but they mere errors in the forms of multiple arguments

rather than single arguments.

.15. geed X(1,2,3) for X(1),X(2),X(3) (1.1%). Errors of'this kind

usually occurred in TYPE commands:

TYPE F(10,20,30) for TYPE F(10),F(20),F(30).

rs could have been classed wit} delimiter errors, but were so

diffe,ent from other deliMiter errors that they were put into a separate
. ,

class.

16. (Used (i) D or SET with multiple arguments (3.1%),. The only

two AID ,verbsAhat allow multiple arguments are TYPE and DELETE, so

commands- 'Like

and

SET X 1,2,3

DEMAND X;XZ

are inerror. Apparently, the students overgeneralized the rule that

allows multiple arguments and produced these reasonable but erroneous

commands.

477. Omitted second occurrence of PANT or STEP (1.0%). Some

eXampies of these errors are:

TYPE PART 2;3,4

DELETE STEP 2.1,'2.15,2.2

,1
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Also grouped with these are similar commands in which the words MT..or

STEP were pluralized:

. TYPE STEPS 1.20 1.3, 1.4

DELETE PARTS 10,11,12.

The next four subclasses contain, errors found in AID modifiers.

18. Misplaced IF clause (0.8%). T kind of error, which occurred

rarely, was caused by' r.transposition f the main clause and the copdi-

tional clause:

3.7 IF X >`Y TYPE X.

This order of clause6 is used in many othe.r-progrrine uages.

19. Error in logical expression 21.0%1,__Several of these error%

resulted from attempts to use commas ,to indicate njunctions:

20. Modifier used wit wron (3.1 %). The most common of

tHese errors (16 out of 23) resulted from an attempt to use FOR as a'

modifier of TYPE:.

TYPE 3*Xt(1/2) FOR X ... 1,2,3,4.

Since FQR can be. used only with DO, this resulted in,an error message.

Other instances of errors in this class are the use of TIMES as.a

modifier for DEMAND, the use of AS as a modifier TYPE, etc.:

DEMAND X, 3 TIMES

TYPE R as "RADIUS".

21. Used POR'with more than one variable (4.6%). Most occurrences

of this error were for Problem L15-15, and reflect an omission in the

curriCulum. The problem asked'for a program that would type the larger
4

of two numbers, and the partial model shown-in the problem did not
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include any clues to hots the input of two va bles could be, managed.

The students had litt

used'FOR on many occ

xperienc with multiple input but had

t several values for a single variable.

Some examples of the co ands pr duced by students are

DO PART ,2 F R X = 1, Y 2

,
DO PART 2 FOR X = 1 Y.= 2

DO PART 2 'FOR `(X,Y) =

Students tended to persist in these errors, typing.the same command again,

,
.

or a similar, one, even after receiving, an error, message. With a warning

that FOR cannot be used with more than. one veriable,these errors could

prObably haVe been avoided entirely. (Such a change was made in a sub-

sequent revision or the curriculum.)

22. Miscellaneous (18.9%). The errors classed as miscellaneous

are too_varied to be simply characterized. Rowever, a large portion of

these are probably typc,graphical and are of a transient nature (i.e.,

many of the errors Caere corrected before execution or after an error

2'

message was given). .A few of.these errors were. caused by attempts to /

a

use text strings as one of several arguments for a TYPE command: p.

TYPE ;'THE AREA rs", A

This error was caused by a bug in the,interpreter and no warning about

it was given ih the lessons.

The second main group errors, the semantic evors, are also

divided into:classes and subclaSses-in this case, 9 classes containing

16 subclasses. The distribution of semantic errors is shown in Table 9.

Of the 1080 errors analyzed, 350 (32%) were :semantic. Each subclass is

described individnally5. The first four subclasses are in the class
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Table 9

Classification of Semantic Errors

Number' Percent;:of.

01assifidatiOn of errors .total errors'

I. Errorsin Use of,Variables

A. Real

B. Functi.ons

C. Step or Part

D. Other

Total,

I. Algebraic Errors.

A. Omitted parefitheses

B. Incorrect operator

°C. Other
4 Total

III. Er/15m irk Logic

e

C. Other 2 o.6
...._

I
Total 32 9.2

4

IV. Erriorg in Use of Dummy Va ables 13 3.7

V. Confusion between LET ati. SET 6 1.7

VI.- Confusion between STEP =nd PART 8 2.3

A. Logical expressions

B. Sequence of, execution

lo6(

9

20

27.7

4.0

16 4.6

VII. Numerical Error 11 3.1

,..

VIII. No ProvisiOn for Out u 6 1.7

Ix. 'Miscellaneous 33 9.4
t 4

350 100. 0



k
titled "Errors in Use of Variables." The errors in the first three sub.

classes are:'referepde errors', that is errors caused by attempts to

use undefined variables, modified furictions, etc. Errors in the use of

dumMy:varidbles are not include here but in Subclass 11. AtOgether,

errors inthe uss of variables, excluding dummy variables, accounted for

41.2% of the semantic errors.

1. Real variables (30.3%). These errors resulted fronrattempts to

execute a command containing undefined real variables, unindexed or in-

ndexed in an,algebraic expression. A large number of these errors were

caused by the inadvertent,omission of-Fltep"number,which caused the

commands to be executed immediately, rather than stored and executed

later as intended. Thus, some of the errors in. this class are closely

related to some of the errors in Syntax Subclass 9.

2. Functions (2:6%). These Wrrors resulted from attempts to use

undefined functions. In several cases Eitudents used one name for the

0
function when defining it and inadvertently used another in a

/
later

function call. Some of these errors, however, indicate a deeper con-

ceptual misunderstanding; errors in which the name of the dummy variable.

was used as the function narte it the function call are of this type.

3. Step or part (5.7%). These errors Dccurred when students

attempted to execute, list, or delete an undefined step or part.

4. Other errors in the use of variables(2.6%). Most of these

occurred with indexed variables.

All of the errors listed above caused error messages, and are thus

0

closely related to the syntax errors. Also like most syntax errors,

most of these errors were immediately corrected'by the students and
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are not indicative of any serious misconceptions. The remaining semen-

%tot c errors are, fiOr the most part, evidence\of more fundamental misunder-

A

Standings..

jj.

The next three subclasdee'contain algebpic errors, other. than syntax

errors. fo

5. Omitteparentheses (1.7%).. Most of these errors occurred in

J
. problem L12-, 'Awhere Students used expressions like + B + C/3 to find 'JJ
the average of three numbers.r.

. ,

6. IncOrrect operator'(7.1%). Most of these errors occurred in

'Problem where students used expressions like 6.9.-3937 instead of

the correct 6.9/.3937.

7. Other algebraic errors (18.9%). This is the second most numerous

subcla s of the semantic errors, aad the errors were varied. Many were

the sult f incorrect translations'of algebraic expressions, into AID'
# ., .

nota ion dri'd many others were the result of incorrect ,expressions that

were correctly translated. The two problems with the most errors in

this subclass were the only two problems that required the use of the

standard AID function IP (integer part).

The next three subclasses contain errors in logic which accounted
.

/ for 9.2% of the Semantic errors.

8. Errors in lOgical'expressionst (4.0%). These errors in forming

conditional clauses occurred most frequently for Problem L24-11, which

asked for a program to count from 1 to N, and the most common eigror was

the of < for <7-.1:which caused the program to count to N - 1 rather

than

64
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9. Errors i sequence of execution (4.6%). There were fewer errors

in sequence of.exe ution than we anticipated; however) errors causedOoy

the complete OMiss on of a branching command were not tabulated: One
O

error that occurred several times was of this form:

1.1 DEMAND X

.2 TYPE F(X) 4

1 3 DO PART 1
\

1

If TO had been used. i. place of DO, this program would have been con-

sidered -Correct.. As ii is, it functions correctly for a large number:

:of iterations (sufficie

capacity of the h-do stack is exceeded. .Since students were taught

for most purposes) and fails only when the

nothing. about this featu of the interpreter, and since thisQprogram

functioned correctly from the student's point of view, it might, have

been better not to have cynsidered the DO command in error.

10. Other errors in ogic (0.6%)'.

11. Errors in use ofhlummy variables (3.7%). Sgveral of these

errors occurred when the student Changed the name of the dummy variable

d:

LET F(X) =.3.144Rt2.

in the middle 'of a LET co

All of the errors with dummy variables indicated a serious conceptual

difficulty, which thecurriculum-did little to4 spel.

12. Confusion between LET and SET (1.7%). As a rule, LET and SET

cannot be interchanged, and certainly not in the ways they were used in

the lessons. There were however, several instances where' LET was used

correctly, but a SET Command would have been preferable. These did not
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count as errors, although it is likely that these students Were confused

-about the difference between LET and SET.

13. Confusibn.between STEP and PART -(2..3%).. An example of the

errors in this Subclass is

DO PART 3.25.

14. Numerical errors (3.1%). Several numerical errors were prob-

ably typographidal in nature. °

15. No provision for output 0,7%). Again, more errors were

expected than occurred.

MiscellaneOus (9.4%).

The error analysis was undertaken more'in the ,spirit of,demonstra-
.

a ting a method oe error analysis for use with similar data than as a

definitiye study of the kinds of errors students make in learning to
o

0 47

program. With only 25 Problems and 4o students, the data are too Sparse

to.warrant viewing the statistics as more than indications of tendencies.

Some tendencies are clearly indicated, however. Typographical errors

accounted for the largest part of the syntax errors, and reference errors

(Subclasses 1, 2, and 3 of the semantic errors) accounted for the largest

portion Of the semantic errors. A sizable number of syntax errors are

.

'reasonable' errors, that is, commands that could have been interpreted

correctly had the interpreter been prepared for them; most of these

resulted from misapplying--or overextending--some existing syntactical

rule. In the semantic errors the second most numerous subclass was

class of algebraic errors, which partially confirms a previous su icion

that students were more deficient in algebra than the curricul assumes,
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and.that the curriculum does not devote enough time to teaching under-

lying algebraic concepts.

Several summary statistics are presented in Table 10 for individual

problems. For each problem, the totals of both syntactic and semantic

errors and the ratios of these to the number of students who attempted

eaqh problem are shown. Some of these derived statistics are used in

the next chapter as measures of problem difficulty.

In comparing the error rates fo different probleMs it, is clear

that Problems L32-5 and L32-8 are diff ult both syntactically and

.

semantically; these two problems also appeared among the most difficult

byothef measures of diffiqulty.

The correlation between syntactic and semantic errqrsois not high

(.34) and the most aitiking discrepancy it for Problem L29-19 for which

there were 70 syntax errors and-only 8 semantic errors. This problem

is also one that was mentioned as extremely difficult by the criteria

used in Chapter IV. .

The error analysis described above yielded some interesting results

and pointed4the way for future detailed studies of similar data,' How-

ever, the results may be misleading because in classifying and counting

errors, we used the occurrences of errors rathe than of the number of

students who made,errors. One would expect some correlation between the

two categories but it would be far from'perfect for there were a number

of cases in which a sizable number of errors were made by only a rela-

tiVely few students. This wasiOgrticularly striking when a stud

persisted in repeating an error many times even after receiving i

vening error messages.
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Table 10

Classification of Errors by Prole

Type of Error

Problem
number

Number of
errors

Syntax

Errors
per student

L5-30

L8-9

L8-27

L8-28

L9-3

L9-8

tl

11

10

21

23

26

18

0.31

0.27

0.55

0.68

0.81

0.53

-L10-10
%

9 0.25

L10-19 12 0.34

L11;11 19 0.58

L12-4 18 0.51,

L13-29 22 ,0.63

L15-15 61 1.97

L15-17 36 1.29

L1-18 25 0.93

L15-21 32 1.10

L16-4 36 1.16

L16-16 514

L23-7 23 0.96

L24-11 21 1. et

L25-8 11 0.44

L26-5 35 1.25

L29=19. 7o 2.69

L32-5 75 2.88

°Semantic

Number of ErrOrs
errors per student

68
, 75

23 0.64

9 0..24

12 0.32

15 0.

18 0.56

-20

13 0.36

7 0.20

8 0.24

21 0.60

17 0.45

11 o.35

11 0.39

11 0.41

9 0.31

0

0.28

0.29

0.90

0.48

0.68

0.31

1.15

A

'1?
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Table 10 (cont'd)

0 o

Type of Error

Syntax Semantic

Problem
number

Number of
errors

Errors
per student

Number of
errors

Errors
per student

L32-8 51 2.22 25

L32-19, , 21 1.50 7 0.50

TOTAL 740 1.07 350 0.49

(average erroxs,
per student
per problem)

(average errors
per student
per problem)

!,
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CHAPTER VI
1'

Problem Difficulty

In the last three chapters several measures of problem diffiCulty
4 q

.0

.
. .

were discussed: the number of typed commands that contribute towatd a

correct solution, the proportion of students who produced.. correct solu-

tions, the number of syntax errors, etc. In this chapter these and

other measures are compared, and 'an attempt is made to account for the

,variance in problem difficulty.

Nineteen measures are defined below. All are measures, of qualities

presumed to .be related in some wairto problem difficulty. Some, like

the rate of syntax errors, vary directly with "problem*difficulty, whereas

others; like the proportion of students who produced correct solutions,

vary inverSely. The first three variables are measures of proportion

correct, and the statistics are derived from those discussed in hapter

IV (Distribution of Correct Solutions). The next ten measures are based

on errors; the values of these variables are found from the statistics
4

discussed in Chapter\V (Errors), There are five measures of the effort

expended, using stati ties frolli Chapters III and IV. The final measure,

the proportion of Ttud,nts who attempted the problem, is evaluated from

statistics given in dharer II. The 19 measureb. are described below and

the values for each problem are given in Table 11.

Proportion Correct.' All three measures of proportion correct are

ratios of the n6ber:Of students who gave correct solutions to the number

of students who attempted the problem. This definition of proportion

correct is Somewhat different from the definitions used by others.
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Table 11

Values for Measures Related to Psoblem Difficulty

........... ..........

prob.
No. M1 M3 M4 M5 M6 mM7 M8' M9 MlQ

.,..._

L5-30 :472 .889 .972 .3p6 .639 .944 .082 .172 .254 2.091

L8- .838 .892 .973 .270 .243 .514 ',684 --7107.6....,.26.? .900

L4-27 .658 .711 .763 .553 .316 .868 .122 .070 .192----,.573:

L8-28 .618 .735 .824 .676 .441 1.118 .125 .082 .207 .652,

L9-3 594 .'625 .906 .813 .563 1.375 .114. .079 .193 .692

L9-8 353 -.559 .559 .529 .588 1.118 .098 .109 .208 1.111

L10-12 .778 .917 .944 .083 .361 .444 .0 .123 .151 4.333

L10-19 .857 .914 .9q1. .343 .200 .543 :..104-e'''.061 .165 .883

1,11-11 .667 .667 .788 .576 .273 .848' .975 .036 .111 1.474

LI2-4 .800 .943 .971 .514 .600 1.114 ..066 .07 ,,..143 1.167

143-29 .600 .600 .600 .629 .486 1..114 .095. .074 .169 - .773

115-15 .484 .516 ,613 .1.968 .355 2.323: .176 .032 .207 .180

L15-17 .643 .643 .679 1:286 .393 1-679 .097 .029 426 .306

L15-18 .407 .40 .40 .926 '. .40 1:333 .102 .045 .147 .44o

L15-21 .690 .690 .759 1.103 .310 1:414- .04 ..021 .094 :28i1

L16-4 .774 .839 .806 1.161 .323 .484 .122 .034 .156 .278

L16-6 .276 .310 .345 1.862 .276 2.13Q. .082 .012 .095 .148

L23-7 .500 .500 .667 .958 .292 1.250 .o67; .021 .088 .304

L24-11^ .381 .524 .381 1.000 .905 1.905 ;095 .486 .180 .905

L25r.8. .720 .840 .720 .44o .480 .920 .088. . ..184 1.091

L26-5 .536 .571 .607. 1.250 .679 1.929- .124 .067 .191. .543

L29-19 .115 .154 .115 2.692 , .115. 2.808 .190' ..008 .198 .043

L32-5 .269 .269 .269 2.885 1.154 4.038 .124 .04? .173 .400

L32-8 ..435 ' .435 .435 2.217 1.087 ..3-304 .094 .'o46 . .140 :14

L32-19 .429, .429 .500 1.500 .500 2.000 .092 .031 .122' .333
,

Mean .556 .623. .663 1.06 .48 , 1.54 .101 .061 .162 ' .76

S.D. .194 .218 .242 .75 .26 .87 .033 .038 .041 .86
.

(continued)
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Table 11 (contLd)

Prob.
NO ' Mil M12 M13 M14 M15 M16

t, .

M17

. - -

M18 ,

L5-30

L8-9

L8 -27

L8-28

L9-3

L9-8

L1012
L10-19

L11-141

112-14

L13.29

L15-15

L15 -17

L15-18

L15-21

L16_14

L16-6
L23 -7

1.14-11

L25-8

L26-5 -.

L29-19

L32-5

L32-8

L32-19

.472 .250

.257 ..243

.14314 .1421

.559 .382

.688 .563

.559. .1;12

.222 .139

.271.: .257

.170 .14214

3223 *. 371,

.371 .400

.465 .581

.168 .571

.2°22 .370

; .11a .f..483
;29/ --.516

.178 .828

:208 41.542

.317 .'429 1

,1460 .3-64
1 .

.276 .5436

'.216 ..,60

.67.3 .808

.661 .739'

'.667 .857

/
.44-4- 3.722

.162 4.216

.263 4.526

.291+ 5.1412

.25o 7..12'5

.500 5,-302,
,gz.8 va.,9144

.229 3.286

.303 7.667'

. 3143 '7.771

.400 6.600

.323 11.194
I 7

.321 13.321

.333 . 9:0714

.207 . 15:000

.387 9.484

.207 22.621

: 167'* '14.208

. 619 10.571,

.320 5: 000

.571. 10.07.1

.269' 14.192..
.692 2.3.3)46 .

.565.. ,23.522,

.214 3.6..357-

3.472 2.167

2.89 2.595,

3.658 2.6814

4.647 3.1147

5.313 4.063.
'4,i ?.1.353 4.000

2 . 3o6 . ,,1.-912

2,!?7,1 ,/ 2.143
5.909 3,..370

6.829 14.'686

4.429 2.68.6

3.774
.
lo. 286 8.464

7.111 ;,. 4'.778

11.759.- 9.877

7.387 5.7714

14.345 8.0314

11.743 ., ; 6.250

8.238 5.857 ,
.. ,

3:6140 , 1.720',,
..

8.036 6.5oo
7.423 3.692

114.652 5.077 -,

15.739 io.522
12.000 f.. 000

. 582

.807

' . 5

;582

.570

.7143 .

.870,

..652

.51a
..603

.407

.337

..635
.527°

.e60

.609

.355

.440

.5.514.

... 344
d

.6145

..260-

:2?.?

.447

.306

.1.861 .900

1.608 .925

2.263. :91?0

, .706 ,.850

3.563 .800
.8V

3,.,4 ''. .923

s'1/.6143 ''' .9?].

1.533 .868

,1.554 .,921

2.200 .921

2.239. .886
,

...'1. 33g .800

1.512 ,..771

. 1.500 . ..829

1.897 .i.886
1:885 ..829

.2.36,8- .75o

a..762' .656

2.500 ..7.81
,,,

.1.439 ,..875

1.092 ..839
3.891 , .867'

.4.704 .7.76

5.1452 .483

illeaLri :.37 '-' .'487
s .,

10.2 7.b, 4 ' -.it .8..., .523 2.21 .8314

s. D. .,18 .,189 .9 .144% 6.3 . '14 ..0. 2.14
. , .

.155
.

1.08 . r'3.oa

..1

N
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Commonly, the denominator c'f this"ratip istaken to be the number of
0

studentsWho encountered the problem, so that a failure to respond is

,

.

equivalent,to an incorrect response; this -definition is used whenever

.

0 r 6
.

. .

all students are ,exp'e,cted to respond to. every exercise presented to, them.

-SinCe,te AID bourse allowed students to omit problems without penalty,

'we chose the definition using as.a divisor the number'dt students who
f

actually at?mpted.tosolve the problem. The three measures .of propor-

Lion orrect are as, follows. /4 v

.
, ,

Proportion Correct on First TriaY,4num)oer of students who gave

a col'rect solution: on the first trial) (ntmber-pf-students, who attempted
b

o0

the'probleMk-Mlis taken as "the primary Measure of pi-oblem difficulty.

ThiS,variatle'wes discussed in Chapter rvr Its value ranges from 11.5%

for probleM L29r19 tb 85.7% for L10-19. The mean is 55.6% for the set
. .

bf25 pholilems.-

Propor±ion'dorreCi on First Trial Disregarding Algebraic Errors
,:

.-
. .

1

.
. -

(ilumber.of students whose solution on fir4t trial was correct except. for-
.0 -.

.

possible. algebraic errors) 7 (number of .students attempted the problem).,

0

'For several problems, e.g., L5-30, L9-8, L12 -1, students used an algebraic,

formula that was incorrect, for instapce,°x.3937 for x/.3937, altho gh

°

other respects the solution was correct. As pointed out in ,

Chapter IV, disregarding errors in algebraic formulas °Increased the pro-
_

portion correct substantially for, some problems, with increases ranging

up to nearly 100% (for L530). The mean of M2 is 62.3%,'ascomPared to

55.6% for Ml, and the standard deviation Is 21.8%. Pursuing the compar-
,

`ison further, we find the correlation between M1 and M2 to be quite/t4h

73
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, ,

(r = .90), as shown in the correlation matrix for, the measures of Problem
a ,.

difficulty (Table 12).

M3: Proportion Correct on All Trials- number of students who

achieved:a correct solution on some trial) = (number of students who.,

attempted the problem): Had the teaching program consistently asked

4 1

studenta to makeanother try if their first was not successful, M3 mould

be ,a better measure of .problem difficulty. 13ince this was not done and

since the amount of help offered varied considerably, this-measure is not

as satisfactory as either M1 or M2. The mean of M3 is higher than for

either.M1 or M2 (66.3% compared to 55,.6% aril 62.3%) and the standard

deviation (2442%) is also higher. M3. correlates slightly better with.

M2 than with Mi:(.94 vs.-88) although Ml, like0131 is based on completely

correct solutions. This evidence &itself is not convincing but; coupled

,

with a closer study of the subsequent actions of students who made simple

algebraic, errors on their first try it supports the Inference that the

teaching, program is reasonably adept at detecting such errors, and offers

. ..

effective assistance to the students who made Ahem.
-, p

Number, of Errors. The 'three measures of number of errors are all

aveerages for the students who attempted the problem.
.01

Number of SyntaX Errors per Studene--(number of, syntax errors)

(number of students who attempted the,problem). The average number of

syntax errors ranges from'08-for Problem L10-12 to 2.88 for Prqblem

L32-5, with a mean of (S.D. ; .75). One would expect errors to

'correlate negatively with proportion correct; this is.true,and the

correlation coefficients pre all quite large: r
1 4

.72,
7

1.2'4 '83'
-

and r
3 4

- .80. The Correlation with M2, which disregards algebraic

74
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errors, is c bly-higher than the co relation wifh ending'

support to the not in tpat M2 may b- better measure of programming

difficulty than Ne.

M5: Number pf Se antic rrors per Student--(number of semantic

errors) (number of students who atteMpted the problem). The average

6 /

number of semantic errors ( 8) is less than half the average number of

syntax errors (1.06) and th range of values is also smaller (.11 to a.15

with S.T. = ;26.)'. Furthermore, the correlation between syntax andViantic

error's is qUiteslow (r
4 5

= .32). The correlations between semantic

rrors and the three measuresof proportion correct are also quite low,

'between and -432; and semantic.errors, unlike syntax errors, corre-:

w.

late bett -with Ml than with M2. as would be expected since a large
0

number of. semantic errors are taken out by M2.-

M6: Number of all Errors per Student--M4 + M5..The average number

1 errors is composed4of about two-thirds syntax errors and one-third

semantic e rors, with a mean of 1.54 errors per problem. The correlation 4-

(

of M6 ;Itth s ntax errors,is remarkably high; r1.1306 = .96, as compared to

.

r5.,67 '57,
th correlation with semantic errors. The correlations Of

..

, .

M6 with the three measures of proportion correct follows the same pattern,
....."E'

as M4 the' number if syntax errors.; again,,tpere is a slightly higher

a 0
'correlation with M2 an with Ml (see. Table 12).

Error Rates. Sin the total number of errors may be dependent upon

the number' of commands given by the 'Itudent, three measures of error

rates, were also defined-, Co respondirig t6 the three Measures M4, M5, and

M6. For each of these 41e1 umber of errors is divided by the number of

\ 4'
commands typed.

r-



s.e

M7:-..Syntax Error Rate--(number of syntax errors) (number of

commands typed). The mean syntax error rate is 10% with a -standard

deviation of 3.3%. Recall that the count of syntax errors is .a count of

errors themselves and hot a count. of ,comm s in error, so one cannot

infer that an error rate of 10% indicates 'hat one command in ten is in

error but that,.in ten commands, there is on th- yerage one error. M7

corresponds to M4, the numberof syntax errors, and the correlation is

substantial but not spectacular (r = .59). In making comparisons with
r

proportion correct, we find that M7 fblIows same pattern as N4 but
, -- .

.,,
that the correlations are mucbt lower; for exaffiple r .i.S--only -.44

' 1,7 .

... *--,

'Vrhereas r -.72. As a iloediction of proportion correct, fhe number
, 4-'1 4

ofsintax errors-would serve much better than the rate of syntax errors;

, -

accounting for 50% of the,variance as opposed. to 20%.

M8: Semantic*tror Rate -- (number, semantic errors) (number of

Commands typed). As we would expect, the semantic error rate is lower

than.the syntax error rate (6% vs. 1 I P, Further comparing these two

measures*, we notice, that the correlation is negative (ri,A =,-.34), and
P.

that the correlation between the semantie.error rate and,the.nUMber.of

syntax errors is also negative and has an even,higher value-(ri, 0 = -.63).

Furthermore, although all of the other'error measures, M4 to M7, correlate

,

negatively with proportion correct, as expected,"the semantic error rate

0

correlates positively with all three measures of proportion correct, and

the values, though not high, are_substantial-(.25, .58, and -.50). We do

not know whether this phenomenon can be acCounted,for by characteristics

that,are peculiar to this sat of problems .or curriculum, or whether it

is likely to be true for other programeLng problems given in other
'1 a

77
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circumstances.- The evidence here is strong enough to warrant a closer

study of other data.

- M9: Error Rate -- (number of all errors) = (number of commands typed;

The.mean of M9 is,16.2% an average of one error for every six cqmmands

typed. M9 stands in the same relationship to M7 and M8 as M6 does to M4

and M5, and one would expect to find a similar pattern in the correlation

matrix. The similarities are few, however, and one of the more noticeable

,

variations, is in the correlation with. syntax errors. As we.. saw,'M6, the

number of errors, correlated extremely highly with M4, the number of

syntax errors (r = .96). In comparison the oorrelation between M9qand

M7 is only The correlations with semantic errors are quite'com-

- >

parable:. = .57 and 50 , .65. Thus_, the rate of all errors
..),u o,y

correlates better with the rate of Semantioerrors than with the rate

syntax-errors, whereas the opposite is true if wameasure the number of

errors instead of the error rates. Although there was a fairly high

correlation between M7 and MI, and a lower but not insignificant e2rre-

lotion between M8 and M5, the correlation between'M9 and M6 ie essentially

nil (r = -.03). As a final comparison between number cat' orrOrT atO error

rates, consider the value of 149 as a prediction of proportion corrcct:

not more than 2% Of the variance in pPoportion correct could be accounted

for by the -total _error rate; on the other hand, M6, the toLai'number pf.

errors, could account for 50%.

L.Fromothis aiscussion it is-clear:that measures -,of errors, and in L.

a. ,o V
particular the total error rats; measure problem difriculty alovg a

lifferenAdimension than proportion correct. Although thereis a very

high c)rrelation etween the number of syntax errors and proportion

78 85
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correct, this may be because longer programs tend'to be mote difficult

and also afford more opporturftti for syntax errors; that this is not

the whole story, however, is sho*n by the substantial correlation between,

syntaX,errots and proportion correct even after length is factored out

I

(r
2,7

-.48, for example).
I

There are two more IneatUres of error rates:that may be of some

interest:
0"

M10: Ratio of Semantic Errors to Syntax Errors--(number of semantic

errors) = (number of syntax errors). The mean bg M10 is .76; on the
\

.
average-there .are three semantic errors for every four syntax errors.

The range of this variable is large,'.04 to 4.33, with .a standard deyia-

tion of .86. m10 is, as expected, negatively Correlated with syntax

errors, both M4 andJ17., and positively correlated with M5 and M8, the

two.measures of semantic errors. Except for r5 these correlations.

all have a magnitude-of over .5, and the correlation 'with M8,' ,the.

semantic error rate, is over .74. The correlations with proportions

correct have the same patternt, and nearly the Same values, as for M8.

M11: Ratio of Errors to the Length of the Expected Correct. Solution--

(number of errors) ((number of commands-in the expected correct so)4ition)
0

X.(number of students who attempted th& ptdblem)]. This variable has a1
.

mean of .37 and its 'correlation with the other ,measures of/error rat

/

is fairly low except for the number'of semantic errors (r
5,11

= .60).

'',.

Mll correlates negatively with'propo ion correct, as,we expect of error
,

`measures, but the values are low.

The Number of Students Who Made Errors. For many problems, most of

the errors. were made'by only e few-students. The fact that students
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sicipp&ddifferent problems may cause some doubt about the reliability of

measures 1114 to M11. Tile last two error

M12: Number of Students Who Made Syntax

who made syntax errors) = (number of students

measures do not share ihismdefect:

On the average 48.7%

the range is from 13.

correlation with the

of the students made one

9°%o .for Problem L10-12 to

average number of syntax

(r4
12

.86) but not nearly 'so
0
high with the

'

= . 39) . ain we see evidence of the

'and semantic errors: the correlation between

number of's4dents who made syntax errors is

Errors--(number of students

who attempted the problem).

or more syntax errors, and

85.7% for L32-19. The

errors is quite high

syntax error rate

difference between syntax

the semantic error rate and

negative and quite -high

/

(r
8

= -.67) . The correlations of M12 with the three° measure's of
,12

proportion correct follow the same pattern as for the othe

measures (144 and M7), showing the greatest Correlation wit

portion correct di'3counting algebraic errors. These' three

are not quite as high a Mh but are r-on-,iderably higher than fa- M7.

M131 Number of 1-.:1&:nt-; Who Made :-4:7nR.nic

r syntax error,

h M2, the pro-

correlations

PtPdent WhG mHtE' .zemanti: errors) (number of ,4,..rnotpd

the problem) . On the averag,-! 31t .6% of the ctudentn made olif M re

semantipvrrom. Fitt' o..t1 1C .P% is for Prohlt!m

high.9f 6 .2% is f0124.3::=.5. Again the correlation in rro4h it7t(*.r

11'0

the number of errors than with th error rats: r
5,1

.8t), whereas

As we have come,to.expect, there is 1 ttle cc,rrelation

''with -m'3 easUres of syntax errors:

The lowest of all -CT.Trre--latons-for M13 in

betWeen M13 and the, ratio of semantic to
. .

r
4,13

-

r

r
10,13

syntax errors. The

,,and r .16.
_1(?_,3

-the correlation

corretlations

0



of M13 with the measures of proportion correct are negative but the values

are not high (less than .4).

If M12 and M13 were to be taken as, replacements for M4 and M5, we

can see that not much would be gained; the Correlations r4 ,, and r5 13

are both quite high.

Lealing measured of errors, we turn now to measures of effort. 4

Effort Expended. Five measures of effort are defined the last two

of which are ratios.
F Y

M14:- Number of. Commands Typed--(Allerrof commands typed) (number-

of.students. who attempted the problem). The number of commands typed has

a wide range, from 2.9 for Prbblem L10-12 to 23.5 for L32-8. The mean of

this variable is 10.2. We would expect this variable to vary directly

with problem difficulty and hence -inversely with proportion correct; this

expectation is borne out and the correlations with Ml, M2, and. M3 are

quite high (e.g.,
2,14
r -.75). Looking at the correlation with A we

confirm the suspicion that the number of commando and the number of syntax

errors are statistically dependent (r .86), and the correlation with

syntax error rate is correspondihgly satisfyingly low
1

( .16).714

Still 1A;oking at the cOtrelatin vector ror M14.1 we find tnat the car-

relation with the semantic error rate is fairly high but is negative

A
(r8 14 -.65).

M15: Number gf-COmmands Executed--(number of commands executed)

(number of scu:nts who attempt the problem); The alverlge number of

and executed is 7.4, about th "rourths of the co hds .typed, and

the correlation with commands type extremely high' (T14,15
'9§).

The correlation vector for M15 is ite similar to that for commands

81
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typed, including the high negative correlation with the semantic error

rate (r815 -.64).

M16: Commands Used'in Partially Correct Solutions -- (number of

commands used in correct or partially correct solutiohs) = (hti.Mber of

students who attempted the problem). The average number of cam-ands

used in partially correct solutiond is 4.8, as compared to 7.4 executed

commands and 10.2 typed commands. As mentioned in Chapter tV, fewer

than half the typed commands contributed toward a correct solution. The

.
correlations of M16 with both commands typed and commands executed are

_-

quite high: r16 .77 an
d 15,16

85. The correlation vector for

M16 again follows the pattern set by M14 and M15 although the magnitudes

are generally lower. Again we note that the correlation with the syntax

error rate is low (-.08), and that the correlation with the semantic

error rate is still negative, though somewhat less than for M14 and M15

(-.56 as compared to -.65 and -.64) . Since °it is hard to believe that,

as a general rule, the rate of siemantic errors de-clines with the number
.6

of commands, it, seems likely that thic regu4 is- caul'ed by unidentified

,
peculiarities. of. the get o'f'problems or the curriculum.

M17: Ratio of Commands titled in Partially Correct CAllutionp to

Commands ed--(number of commands used in correct or partially cr,rrect

- solutions). = number of c&nmands typed). This variable measures the

........\:

:prop° of useful effqt; the mean is 52.3% and the range is from

9

7% to 80.7 %. 'Aexaml.ning the" relationg.Arectc9i. for MI74 t/rei.17,ee
I

that M17 corxelates wellvWith th4Orn,ee measures afTpropoe,A-grreurrect

---;----'-

(r > .6) and in the expected-direetIono. As expecteddit Oorre1ate4"

- 6'S
1

negatively w th the numirter of errors., although the correlation with /the
ts

47
I

I
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number Of semantic errors is not high, -.19 as compared to -.71 for

syntax errors. M17 also Correlates negatively with the syntax error

rate (r = -.39), but the correlatioly with the semantic error rate is

positive (r = .42), and there is a very low correlation with the total

error rate (r

M18: Commands Typedi Length of Expected Correct Solution--(number

of commands typed) = [(number of 'commands in the expected correct solur

tion) x (number of students who attempted the problem)]. This last

measure of effort is akin to an efficiency measure: it measures the

amount of effort in terms of a standard, and presumably relatively ef-

ficient, solution. The range of M18 is from 1.09 to 5.45 with a mean of

2.27; on the average, students did over twice as much as was needed to

achieve a correct solution. In the correlation vector for M18 we find

only one sizable value: r
11 18

Since Mll is also a ratio with.86.

the length .of the expected solution, in the denominator, this value is a

reflection of the high correlation between the total number of errors

and the number of commands typed. ..)f some interest are the very low

/ correlations with M7, M8, and M9, the three measures of error rates

(!r! < .05); /relative efficiency, ps measured by M18, ,leemz to have little

statistical relation-to error rate..
Ar

d.

N doer of Students Who AttempteA'j Prublem, final measur of
.71 0.

problem 4ifficulty might,havt been,!classified as'another measure of11

/effort for it simply measures the,4proportion.of students whj made some
a

effort to solve the problem.

M19,: Students Who Att/empted Problem--(number ofstudentswho
//

attempted problem) +.[( ber:of students who attempted the prob )

d3

a
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(number of students who skipped the problem)]. Although there are 40

students represented in the data the denominator of M19 is not always

40 since some students did not progress far enough through the course to

encounter all of the 25 problems. The values of M19 range from 48.3% io

95% with a mean of 83.4%. We do not know why some students skip certain

probleMs,yhether it is because a.certain problem is perceived as

cult, or perhaps as too easy and hence a waste of time. An examination

,of student protocols indicates that there was neither a small group of

`students who consistently skipped problems, nor a particular problet or

set of problems singled out. In-fact, only two problems were skipped by

more than one quarter of the students. A_stud'Y'of the correlation vector

.for M19 does not shed much more 14ght on this qUestiOn. There are two

F1/(-

a ues greater than ..5. The value of r,*19 is -.51, indicating some

statistical relationship with M12, the number of students who made syntax

errors. The value of r18,19 is -.56, indicating a relationship with

relative efficiency. At the other end of the scale, we see very low

correlations with the :syntax error. rate, (r , .00) and wi h the number

Hof studento who made semantic errors (r -.01).

Several facts emerge from the above discushion of the 19 variables

related to Problem difficulty. Foremost is that many a ese memOUree

are statistically unrelated to one another. all of them 'are Measuring

some aspect of 15rOble3n difficulty, then it is clear that the measurements

are along several:; quite different dimensions. There are, of course,

strong similari-4e3 between certain pairs of measures. MI and M2, for

. /.

.

-,t.

-

example, which are both measures ofproportion correct, are closely

related both conceptually and statistically. For the most part, tirse
.

84
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pairs thitt one would expect to be cflosely related do correlate high
h ,

and in the expected direction. There is a striking exception o this

the' se_tesrmeasures based on semantic errors; these

particulal M8 and 14o, do not relate.to

asuresi in

measures of proportion

-or ,to measures,. of syntax errors 111 the 'way one would expect.

correct

In fact,

if we had looked 'only at M2 as a measure of prollortion aorrect and MIO

tas'a .ineasure, of the errors, we might have been tempted to conclude -that
a

,
°- the error rate is. highett `foe the easiest problems. We draw no such. .

conclusions, however, as we have not teen able to fonhulate any intu-

itivelysatisfying hyptit'he8is that ,could account for this apparent

anomaly in the d ata.
1

Having 19 measures bf problgm'difficulty is an embarrassment of. , .

riches, and for more detailed'stildy we chose from among them a smaller,
- ' .

more manageable- subset. As mentnned befcre, ye consider M1 to be the

primary meattire of problem difficulty 'because/it is the rhost similar to

measures: of problem difficulty used by otarer rerlearchers and,bur results

'can th2,15 be more; realily crompard to ritults btained byi,others. For

a reasons already mentiOned, we fe<,!1 that M2, the prop(Atjon ck:rrect dis-

regayding error' in algebraic mc/re f.;atisl,"a". ory measure
ft 4

of programming olfficulty s^. M1 and M2 :;e em vrry similar

aspects of problem difficulty', sc, for vari y we also &Lose four other
N,

- measures that seemed tobc? quite unrelated ''to M1 and M2 and to one another;,

one 'is a measure of syntax errors .(M7), another d measure of semaritie

eradors he''' third is a measure of efficiency or effort (M18), and

tl last is the number Of students who 'attempted the problem (M19). For

85
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ease of reference thege selected measures are listed in Table 13, which

also shows the correlations between each'pair.

In pursuing the study, of these six measures, we are interested in

discovering what Pharecteristipa.,of the problems or of the curriculum

influence problem difficult d how well we could. have predicted

diffioulty-frpm an a Priori evaluation of these characteristics.

The -tool we used .in this ,study Was.steprwise multiple linear rgressiorl

", P

0

using ten:iffdependent Niariables to prOAct the values of the six'selected
P .

:measures of problem difficulty.

dently of the data; soine of'them

themselves (AEG, FCT and INPUT),.

context (LES? HELP, VOCATr, and, ilEW

Thdten.vafiablesbare defilled indePen

meaalir6 charattexistice of the problems
r

aomeomedbure-aspects oft the curricul
t -

. 44-

), and ,ibde are. obtained fro1.1ha.,ex
1,

pected correct solutions and are,hen6e dependent upoplmt.0!the, pro hems
.

and their context (IF,and LNG). The ten variables ,are descibed below

and their dues for each problem-aregiven:16Table.14..

IF.f The variable IF is the proportion:df ditional commands (i.e.,

.

'the commands that iontain an IF plause) used in e expectyd correct

responses'listed in Chapter 'II. ,The values of IF vary from.0% to'67%

with a mean of l4% and a otepaard deviat ion of 20%1 as sown in ,Table 14.

;

/ERG: This virile depends upon the tathemat4661 function required

by the problem.

0 if there

1 if there

2 if there

Thervalues of ARG arc

isno argument for the funPtion

is one real argument

are two real arguments

3 if the argument is a stored list

The mean ofARG is 1.6.
-

a,

86.
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Table 13

,Six Selected Measures of Problet Difficulty

DesCription 6f .Six Measures

4,

Ml: Proportion'Corteci.
(number of students who gave e co rett
solution on their first trial) iP%number
of students who attempted problem)

M2: Proportion Correct up to Algebra. .
(number of students whose solutions on
'first were correct except for
posSible errors in algebraic formulas),
l (number of students whooattempied
problem) G

.

1117: Syntax 'Error Rate.

(number of:Syntax errors) number

commands typed) .

,

M13: Number of Studentsho Map
Semantic ErrOrs.

(number -Of students w o made semantic
errors) i4(number. of sUdents who
attempted, problem)

'
. .

M18: Efficie'ncy
(number of coMmandS typed) [(number of

commands in the expected correct, solution)

X (number:of students who attempted the

problem)

M19: Students who Attempted ProbleM.
(number of atudepte who attempted .p'roblem)
-:- ((number of students whO attempted
problem) +:(number of students who skipped

problem))

Correlations

Ml M2, M7 M13

1.'00, -,44 -.37

1.00' -.48, -.24

1:90. .16

1.00

f

-

M18 M19

-.27' 39,

0

.04 .06

.20

1.00 -.56

1.00

87
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Table 14

Values of. Indekdent (Problem) Variables

Problein !

fl

Number IF ARG PCT

- L5,-,30 .00 1 1

LB-91' .00 1 1

18,27 .00 2 1

0 3

18:28, .00 1 1

L9-3 .00 2 1

L9-8 ,,00 2 1

L10-12 .00 1 1

L10-19 :00 1 1

1,11 -11 .00 1 3

112-4 .00 2 1

'7" L13-29 .00 1 1
4

L15-45 .40 2 1

.L15-.17 .36 2 1 ,

i15-18 .50 2 1,
s

L15-21 .30. 2 , 1

L16-4 .20 1 1
, ,

L16-6 .67 2 1
sp ,

i..23-7 .17 0 . ,,J.

L24-11 .17,1 1 1

L25-8 .00 1 1
L26-5, .60 1 2

L29-19 .46 2 1

143225 .00 3 2

L32-8 .00 3 1

II,

L32-19 33 3 1

Mean .14 1.6o 1.16

S.D. .20 .76 .47

4

REIT LNG INPT 'LES HELP VOC NEW
,

0 2 . 3 5 o 2 1.
0 2 3 8 2. 3 1

, 0 2 2 8 b ; o'
0 2 8 o 5 0

0 2 4 9 - 0 3 ?, /
0 2 . ,4 4 9 0 3 %1

0 2 4 , io 3. .5

0
,

2 10 10 1 5 ' d
0 5 5 11 0 6 1
o 5, .,1 ., 12 ''a. 7 1.

0 3 - ; 13 0 7. o.,1+
.

0 5 0. 15 1 8 1

o 10 . o .15 1 8 0
0 6 '0 15 '1 8 0

0
,

10 ' 0 1.5 0 9 1

0 5 0 162' 2 10 1
, .-

0 12 9 6 0 10 0

1 6 0 23 0 -12 0 ,

1 6' 0 24 ., 12 '0

0 2 7 25' '2 L2 0

1 7 0 26 1 12, ,0 ,,

0 13 1 29/ o 12 '0 4

1 .
6. 2 32 0 13 1

1 5' 2 32 2 . 13 0

1 3 1 32 o. 13

'.24 5.00 2.68 16.7 :to , 7.96 .44

.44 3.29 2.87 8.6 .76 3.81 .51

88
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FCT: Most programs_ wriaen for; the g5 problems In, this. set d;fine

'
"- .

.only a single mathematical function but a few defihe several functions

4 .'

..: ..,i,

(Of the same Aumbex' Of arguments)." The 'Value of FUT .is the number of

A4_

mathematical functions defined, 'and'may.,,be`',1i 2 Y or-3.
,

. , ,

: t

,

' '

REfT : T is a 0-1 "reiteration"' vall'able whosevalue iS 0 if. no

oa

loops orsubroUtinesare and 1 othei;iises
-

, ....

re.
. . .

t. ...LIM: This. vardab1y is the n'aimbe!fof commAndb in tjle expected correct

1.

so1uticn.:' .

The valuet range frOm 2 -4:1 13 with mean of 5. D.-
,

, .

, , .,
TNPT: Tte numberof sets Of input value4 specified in the problR

is
o . - =, 0

. .,
I < . 0'. , .

1 .

given by ,IIIPT willuoe value ranges from 0 to 1.0'with a mean of 227.
. .

LPS: Tliie variable, the le-,3Lon riumber, is a measitire of the positieen

of the prob;em in tile curriculum.

HELP: 7-Thit-, variable ziiazures the amt ant of help given in the

.

problem, statement. Pryblem s.tatement; c',:ca:;ionallyt include an example
$

.

a clo'sely related pro ram, G r part of zA.O. a program, and HELP '4.s a ,>

,

meetlure thi:, kind a;sAotance. HELP 0 it no model wa:7;, given,.

HELP - 1 if a partia1 Was giwn, awl HELP - if' a c'omp11,,te model
.

way, given. -The Vslur. f HELP 1:; nhe-ze7.1.) f(.r f. he d5 pr.)blemo,

with h a milun :of .6.

VOC `.(1,r1 ublte roe .; t he: am( Ur t, et ATI. ye ry that' had

been presented. by th6 ,_-..trrieulum before t he pre.blem wu The

lexical items that ay..counted are

N TYPE

t3ET

LET

DO 2TEP ucied directly)

IP 0 fi

.6 9

,/$



DO PART (used directly)

DEMAND,

IF

AND

TO

DO (used indirectly)

FORM.

Indexed variables

NEW: This is a 6-1 variable thatdepends upon whether the problem

requires the use of a command or function that has not been used in a

preceding programming problem. For this definition "programming problems"

are taken to be any exercises that require the use of the AID interpreter

other than those problems that require only that the student,dopy-ver-

batim AID commands printed by the teaching program.. The "newncoMmands
,

and functions considered here are not restricted to the list given above

for VOC. Approximately half of the problems do require the use of a new

word, and hence have a value of 1 for NEW,-
.

.

The-ten variables described above were used as independe9t variables

in step-wise multiple linear.regressions in an attempt to disOover which

were effective in accounting for problem difficulty. For this purpose ,

it is best to use variables that are statistically independent Of one

another. This goal is difficult to achieve, and wee approaChed with

only moderate success by this set .of variables, as can be seenrom the

correlation matrix given in Table 15. There are five pairs of inde-

pendent variables for which the correlation is greater than .5. The

First of these is IF-LNG. a preliminary study, the variable IF 4as

defined to be the number of conditional commands used in the expected

correct solution, Itather than the proportion of conditional commands.
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When.it was found that thisivariableOOrrelated highly with length

:(r = .85), an attempt was /made to reduce the correlation by dividing by

length. Some reduction as accomplished but it was not as great as was

.

hoped for (from .85 to .73). A study of the values of IF and LNG (see

Table 14) reveals that for 9 Of the 25 problems the expected correct

solution contains only two commands, and that.for these problems the

value of IF is zero; this at alone explains the high val .. of r and is

sufficient reason for considering separate analyses of programs with and

without conditional commands. This was not done here because the size of

the sample is t to small to warrant. subdivision.

The secon pair of highly correlated variables ts REIT-LES, for

which r = .77 Whether or not there are loops or subroutines (REIT) is

highly depen ent upon lesson number (LES).. For the first 17 problems,

included in Lessons 1 to 16, the value onlit7 is zero. The value of

REIT is or six of the remaining eight problems., No reasonable wiky of

transform tg either REIT. or LES to reddte the correlation was apparent.

VOC is also highly correlated with LES (r = .9?0 and with REIT /v.,

(r = .6 ). It is to be expected that the amount of vocabulary intro*ed

willbr dependent upon lesson numbei. and we would ,expect VOC and LEV:to

accou t for approximately the same variance in problem dif

There is one remaining pair of variables with a high correlati on:

for-LNG-VOC the value -of r is .54. In Chapter III we ob erved' a similar

phnomenon., that the total number of commands in the tended to in-

cease with problem number but that the increase depe red more upon an

increase in the Uriety of commands than upon an increase in the'occur-

/

. .

/Fence of a given kiria of command. Tha, comment referred to the data,

/
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1

whereas ING is a function of the expected correct'response; the same

observation seems to be true for both, however.

As a preliminary'view of the relationships between the ten inde-

pendent variables and tho six selected measures of problem difficulty,,

a correlation matrix is shown in Table 16. The correlation vectors for

Ml and M2, the two measures of proportion correct,, are strikingly similar.

Both Ml. and M2,are correlated, highly (negatively) with'LES; the,re are

'as° substantial correlations with IF, ARG, LNG, ancLVOC; and the cor-

-
relations with FCT and .INPT are quite low. The pattern elef the correlation

vector for M19 shows some resemblance to the vectors M1 and M2 although

/ the simi s are not as great as between Ml and M2. There are few

similarities tween the other correlation vectors, and the difference,

between M7, the syntax error, rate, and M13, the number of students who

z):. made semantic errors, is marked. REIT, for example, correlates quite

well with M13 (1- = .5) but not at all with M7 (r = .025). Also, the

coefficient for IF-M7 is positive whereas it is negative for IF-M13.

In general, the correlations with M2 are high, followed closely by Ml,

and the ,correlations for M7 1.

Using BMDO2R we .ran Ax step-wise regressions, one for each of the

4/.84

six selected measures of problem difficulty, and derived linear equa-

tions for the prediction of each of those measures. These equations

(with coefficients rounded) are given in Table 17. For ease of reading

we have transformed each equation to yield percentages rather than

fractions. Our primary purpose in using step-wise regressions was not

to produce these linear mode113, however, but, to determine which of the

independent variables had the greatest influence and to find out how

o 93



Table 16

Correlations Between Independent Variables and

Six Measures of Problem Difficulty

v,

Independent
Variable

Measure of Problem Difficulty

N2- M7 M13 M18. M19,

IF 70.494 -0.579 0.277 -0.308 -0.151 -0.358

AFG -0.439 -0.506 0.265 0.225 0.572 -0.299

CT -0.034 -0.129 -0.014 0.295 / -0.055 0.125

REIT -0.387 -p.443 -0.025 0.496 0.531 -0.576

LtG -0.491 -0.603 0.256 -0.022 -0.324 -0.133

INPT 0.198 0.238 -0.215 -0.245 0.002 0.248

LES -0029 -0.648 0.245 0.382 0.464 10.599

HELP 0.475 0.394 -0.064 0.026 -0.070 0.166

VOC, -0.436 -0.585 0.155 0.303 0.270 -0.555

NEW 0.252 0.358 -0.162 0.045 -0.085 0.395

914
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much of the variance in problem difficulty could be accounted for by

linear combinations of the ten indppenJoNnt variables.

Table 18 is a summary table of the dynamics of the regression,

. showing for each measure of prOblem difficulty the order in which. the

independent variables entered into the regression and-the amount of

variance accounted for at each step. The total amount of variance ac-

counted for is shown at the bottom of each column, and we will start,

with those totals. The first fact of interest is that over 80% of the

variance of M2 and M18 are accounted for; that la, the models serve

quite well for predicting the proportion correct up to algebra and the

amount of effort made by students relative to asfixed aet of correct

solutions. The models for M1 and M19 are also reasonably good; 76% of

the variance in proportion correct can be accounted for, and 67% of the

variance in the number of students who attempt the problem. The models

for M7, syntax error rate, and M13, the number of students who made

semantid errors; are less satisfactory, with less than 50% of the vari-

ance accounted for.

In considering these figures it should be kept in mind that we are

using ten independent variables ti account for the variance in 25 prob-

lems, and thus would expect to account for a substantial portion of the

variance even if our independent variables were poorly chosen. For a

comparison, 'ret us see what the results would be if. we selected only

five of the ten independent variables (the best five in each case). The

amount of variance accounted for bythe first five variOles to enter

the regression is also :;hown at the bottom of Table 18. For all but

one regression, the first five variab acr:ount for 95% to 98 of the
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variance accounted for by the full set of ten variables; in other words,
A

our prediction would be essentially as good if we used only, one -half of

th? independent variables. The noticeable exception to this rule is the

model for the prediction of M7, the.syntax error rate. For this measure

pf problem difficulty the prediction-with ten variables is nit good (only-

42%) and the prediction based on the best five variables is quite unac-

ceptable (19%). In short, our derived linear model eor the prediction

of M7 ip worthless for practical pUrposes.

For the cases in which we can account for a reasonable amount of'

the variance, it is instructive to look more closely at the order in

which the independent variables enter into the regreftion. For three'

regressions, LES it the first variable, from which'we can conclude that

the position in the curriculum:is an extremely influential factor in

problem difficulty.' On the average LES alone accounts for more variance

than any other single variable. The second most influential variable

seems to be IF, whici. i., among the first five variables _to enter the

regression in all cases. HET is among the first five variables in four

out of the six cases, and would have appeared more influential if LES,

with which it is highly correlated, had been removed from the list.

Another variable' of some importance is HELP which entered second in two

Cases and fifth in one case. Tn summary, we conclude that in predicting

problem difficulty the variables with greatest influence are the position

in the curriculum, the predicted proportion of conditional commands)

whether or not loops or subroutines are'required, and whether or not the

curriculum offers an example for the student to model /his solution on.
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The first and last of these might be characterized as curriculum-dependent,

whereas the other two are more related to the problem itself than to"the

context in-which it is found.

These conclusions are subject to some interpretation, however, For

example, in the regressions Ml or M2 (proportions correct) 'REIT entered

in only the eighth step, and we might conclude that whether or not loops

or subroutines are required has little effect on proportion correct. This

conclusion cannot be drawn with impunity, however, because of the high

correlations between REIT and both LES and VOC. Since both LES and VOC

entered into the regressions earlier, they gook out a great deel of the

variance that would otherwise be attributed to REIT.

Another fact worth commenting on is that although LES, HELP, and IF

entered as the first three variables in the regressions for, Ml and M2,

they did'not enter until the fifth, sixth, and seventh steps in the re-

gression for M181 the relative efficiency of students' work.

Before turning our attention to nther aspects of students' perfor-

mance on programming problems, we would like to make a few comments on

the analysis described in this chapter. First, alth,ugh we defined and

explored in some depth a large number of measures of different aspects

of problem difficulty, there is another sizable set, of wiripblet; that

might be even more precise measures of problem difficulty, and those are

measures based on the time required by students to produce solutiohs.

We did not consider time-dependent measures here because the instructional

syptem did not record elapsed time in any precise way. The reader who is

interested in analyses of problem solving behavior using time-dependent

measures of problem difficulty is referred to Dr. James Maloney's paper



"An ,Investigation of -College Student Pvformance on a.Logic-Qurriculum

in a Comptiter-assieted Instruction Setting."- The methods. of analysis
q .

used by Dr. MalOney are similar to thOse used in this chapter, and, in
o .

,fact; provided a model from which this author crew ideas about both

method and definitions of independent "variables.-

One independent variable of possible importance was inadvertently'

omitted, a easure of the amount of guidance available to the students

in the optional hints. This-variable is akin to the HELP variable used

to measure the (non-optional) guidance pen in. the problem statement.

,In view of the fact that HELP was quite effective in predicting Ml and

M2, it seems reasonable that a HINT variable might tlso have been worth

considering.
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/
CHAPTER VII

.
.- .,.

11/
Classification of Correct and Nedrly Correct Solutiops.

. , ,
\ .

the preceding chapters we discussed the'number and distribution

of correct solutions. thisthis chapter and the next we study the kinds

of correct solutions. Correct, and nearly -correct solutions are clas-

sified by type using four different methods Of classification, two based

on the forms of programs and two, based on the functions. As noted in

Chapter IV, 427 of the 747 first attempts made by students were correct.

In addition, there were 124 solutions nearly e °Ugh correct that they .

could be unambiguously classified according to each of the four classi-

fication schemes. These nearlycorrect solutions are included in ~the

analyses described here,' giving a total of. 51 StudOt-written programs,

an average of 22 per problem.
0

In this chapter we use "solution," or more loosely "program," to

refer to,both,the stnred program and the direct commands used to execute

it. For.the'first few problem:, througn L11-11, n ,Alution is not con-

sidered correct unless:; the student executed the prGgram using the input

valUes specified in Ulfr problem statement. (He could, Gf course, use

additional values After L11-11 a cOrrect solution mW.A. include

the commands needed to execute the program but the,et4a1 valuep used.
,

.

are immaterial. Because. of this disponti .y in the grading.scheme

our definitions of program'equival,enee will contain spe.dial clauses for

Tithe treatment ofi solutions written after Problem L11.,11.

I

For the fifst two definftions of program equivalence we are con-

cerned with the forms of programs,.and will define equivalence in terms
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of substitution of equivalent.. commands or sequences of copmands. These

first two kinds of equivalence, which we will call formal Identity and

,formal equivalence, are defined in terms of allowable substitutions as I

follows: two programs are said to be formally identical (formally equiv-

alent) if one of them can be transformed into the other .by any finite

sequence of substitutions, with possible repetition, from the list of

substitutions allowable for formal identity (formal equivalence).

Since the allowable substitutions for formal equivalence include

the substitutions allowed for.formal identity, it follows that any two

formally identidal programs are also formally equivalent although the

conve is not necessarily 'true. FurthOlmore, all of the allowable

;.-

4 substitutions preserve semantics, so any two'that are either.formally

identiCal or formally equivalent will alsObe functionally equivalent

(which will be our fourth definition of program eqUivalence).
&f 4

The formal substitution rules are desc Abed below. Rules 1 to 7.

define formal identity, and ;Rules 1 to 15 define formal equivalence.

.Rule 1.- If two commands are identical except for optional spaces,
.

one may be substituted for the other. For example, spaces may:,te freely

used in simple algebraic expressions, so' these two commands are equiv-
.

alent under Rule 1:

TYPE + Y

TYPE ,X+Y.JZ

Rule 2. If two 1r5641 numerals are equal when rounded to three

decimal places, one may be substituted for the other. The following are

equivalent under Rule 2:
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0.3937

.3937

:394

Rule 3. If two programs differ Only in literal step numberS, one

May be substituted for the other. The step numbers must be in the same

numerical sequence within parts.; and references to the steps (as in DO

or TO commandsare substituted for concurrently. As an example,Jhe

-following two programs are equivalent under Rule 3:
Aa

1.1 DO PART 2 IF If< 1 3.15 1p0 PART 1 IF X < 1

1.2 TYPE X 3.17 TYPE X

2.1 SET X = -1X 1.3 SET X = X

DO PART 1 DO PART 3

Notice 'that although the sequence of steps within a part must remain in
o

numerical order, palt numbers need not.

Rule 4. If two LEI' commands, differ pnlgiin the letter used as- a

IP

dummy variable, one may be substituted,,Torthe oper. Rule 4 applies

only to variab*s bound within a LET command whereas Rule 5 applies to

1

other variables as=well.

Rtle 5. If two programs differ only in theletteis used for

variables) 'one may be substituted for the other. The variables referred

n'ay bereal variables, names for functions, or names for lists

of numbers.

The nexttwo rules are40§plicable only for problems aftef L11-11.

o
Rule 6. In a,OtAct command of the form

DO PART n FOR x = ml

m
1
may be replaced by m

2
where m

1
and m

2
are any numbers list of numbers,
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or range specification. In the/above n is a part number and x,is any

variable.

Rule 7. In d direct command of the form

$ET x = n
1

n
1
may be replaced br n

2
where n

1
and n

2
are any ,numbb rs.

These first seven rules define formq identity. Although the above

definitions are not stated with complete precision they can be refor-

mulated precisely to define a decision procedure f r formal identity,

the- only one of our four equivalence relations th t does admit such a

procedure. When the set of solutions,for each pr blem was. classified

using the above, rules, the most numerous class w s labeled , the

second most numerous I
2'

etc. .These designations are used in ppendix A

which contains a complete list of the types of solutions for each of the

25 problems% For some problems a great reduction in the number of types

is attained by this method of classification. For example, for Prloblem

L8-9, there were 36 correct solutionq, but only four distinct types fiher

reduction by formal identity. For other problems, the differences

between students' programs are less trivial and consequently the reduc-

tion. by formal identity is less effective. For- instance, no two

solutions for L16-6 are formally identical, so no reduction in the

number of types is Achieved. .The number of types, or equivalence

classes under formal identity varies from 3 to 13 as shown in Table 19.

There are an average of 8 equivalence classes per problem,with an average

of 2.7 solutions per equivalence class. As we will see, formal identity

is the weakest of the four methods of classification used.



Table 19

iNumber of Programa in Each Equivalence Class, Using

1! 1:r.: Four Definitions of Program Equivalende
,v..

Problem,'
Number

L5-30

L8-9

L8-27

L8-28

L9-3

L9-8

L10-12

L10-19

L11-11

L12-4

L1-29
L1-15
L15-17

L15-18

L15-21

L16-4

L16-6

L23-7

L24-11

L25-8

L26-5

L29-19

L32-5

L32-8

L32-19

Totals

Number of Equivalence Classes when Partitioned by...
TL

Itiiper of Formal Formal AlgOrithmic Functional t

'c

. A

programs Identity Equivalence EquivalInce EqUivalenc.e

'33
36

29

26,

23

26

30,

26

34

25

20

23

18

25

29

8

13

18

23

22

6

9

16

6

7

,4
12

12

9

6

10 2

3 1

3: 5

3 3

8 7

5

2,

3

4

14 11

7 , 6

10 6

6 3

12 7

8 8

551

11 11

6 6

4 1

12 8

5 5

8 7

9 8

5 4

5

1 1

4' 1

2 1

3 1

4 2

l 1

1

6 1

2 1.

5 2

2 2

3 1

3 ,2
1 1

4 2

5 2

7 3

3 1

1 1

6 2

4 1

8 5

6 3

4 3

204 129 91 42
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Formal equivalence, the second equivalence relation, is alsOid f ned ,
, ..

. /
in terms4of substitution rules. In addition to the above peven*es,

1 1.,;, ..
i

Rules 8 to 15 are /Used to determine formal equivalence.

Rule 8. The/phrases

and

FOR x!= a(b)c

FOR x = a,a+b,a+2b,...,c

may be interchanged provided the allowable length for AID commands is

not exceeded. In the above, x refers to any variable; a, b, and c are

't.real numbers; and a+b,a+2b, etc., are real numbers whose values are a+b

\etc. Under this rule the following phrases are equivalent:

FOR A = 4(2)9

FOR A = 4,6,8,9

The next five rules provide for substitutions of single commands

for sets of commands or for permutations in the sequence of commands

provided such substitutions do' not change the function of the program.

avoid semantic changes, we require that the commands to be substi-

tuted for be contained between "critical points" in the program. A

critical point is either the beginning or'end of a part or a step to

which branching may occur. Thus,'if Rule 11, for example, would ordin-

arily allow us to interchange Steps 7.3 and 7.1k, this would be allowed

only if the're is no branch command (TO or DO) elsewhere that refers to

Step 7.1k. This restriction applicc t,-.) Rules 9 to 13.

Rule 9. The sequence of commands
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TYPE p:1.

TYPE=

TYPE e
n

may be interchanged with the single command

TYPE e
11

e
2'

...
1
e
n

'0

I.

where e Is are algebraic expressions, provided that the single TYPE

command does ',riot exceed the allowable length for AID

Rule 10. The equence of n commands

DO e

DO e

DO e

be_interchanged wilth the _command
2

DO e n TIME

where e is the specification of a part or atep._

Rule 11. The two commands
O

SET x e

DEMAND y

may be interchanged if the expression e curtains nea occurrences of the

variable y and if the variables x and y are riot idenlical. Thus, weC

can interchange

or

SET A . 2*B

DEMAND C

SET A .,-, 2*A

DEMAND C
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but not

or

SETA = 2*C

DEMAND C
AN,

SET M = 2*A

DEMAND M

Rule 12. The two commands

SET x

TYPE e
2

may be interchanged if the expression e contains no occurrences of the

variable x.

Rule 13. The two commands

SET x el

'SET y

may be interchanged if x and y are distinct variables, and e2 contains

no occurrence of x, and e containa, no occurrence of y. Either or both
1

;, /

of the SET commands .may have appended iIF clauses, provided, k and y do

not ocsur in the Boolean expressigns used in the IF clauses.

By a+-suitable reformulation of Rules 8 13, a decision procedure

could be written for an equivalence relation determined by them: The

next two rules for formal equivaledee do not admit of a decision pro-

i

/cedure, however, since both are b sed on algebraic equivalence.

Rule 14. If a command contains an algebraic expression el, then

any algebraically equivaInt expression e2 may be substituted for it.
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Rule 15. If a command contains a Boolean expression e l' then any

logically equivalent expression e
2
may be substituted for it. As an-

example, the two commands

TYPE.X IF X < Y + 7

and

TYPE X IF X - 7 <Y

are equivalent under Rule 15. Notice, however, that the commands

TYPE X IF X < Y + 7

and

TYPE X IF X < 7 + Y

are equivalent under either Rule 14 or Rule 15. Thus, Rules 14 and 15,

:unlike other pairs of rules, are not independent.

The 15 rules above constitute the complete definition of formal

equivalence. As mentioned, only the last two rules prevent the formu-

lation of a decision procedure. for formal equivalence. It is clear from

an inspection of the solutions listed in Appendix A that a few simple

rules fur algebraic substitution would serve to define a decision pro-

cedure for the algebraic expressions found in Inc. data, bo a partial

solution to this problem could be attained if it were desirable to

implement a routine for determining formal equivalence-.

Under formal equivalence a greater reduction in types is made than

under formal identity,'as can be seen from Table 19. The 551 solutions

reduce to 129 types, an average Of five equivalence classes per problem

Fig compared to the eight equivalence classes per problem for formal

identity. Under formal equivalence there in an average of 4.3 solutions

per equivalence class as compared to 2.7 under formal identity.
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We remark again that fOrmal identity is indllided in formal equiv-:

alence so that any two programs that are.formally identical are also

formally equivalent and any'ltwo programs that are not formally equiv-

alent are also not formally identical. The next two equivalence relations

to be discussed, algorithmic equivalence and functional equivalence, also

include formal identity. Functional equivalence also includes formal

equivalence but it is not the case that algorithmic equivalence includes

fermal equivalence. Thus, it is possible .to have two programs that are

algorithmically equivalent but not formally equivalent and vice versa.

What we have then is not a strict hierarchy in equivalence relations but

a partial ordering. Denoting, formal identity by I, formal nuivalence

by E, algorithmic equivalence by A, and functional equivalence by F,

tVis can be expressed symbolically as follows:

4IcEcF
I c A = F

not E c A

nt i A E

For the third of the four equivalence relations, two programs are

considered equivalent if they use the same.algorithm regardleBo of formal

charecteristJ.cs of the program3 themselves. Thus, algorithmic equiv-

alence is concerned with the dynamics of the programs, whereas formal

identity and formal equivalence were concerned with static qualit es.

For our purposes the algorithm used in a program is determined by the

values taken on by real variables, the output, and the sequencein
.$

6

these occur. The names used for the variables are immaterial and we

will be concerned only with those variables that take on real numbers as
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values. Hence, we will be interested in,tthe values of indexed variables,

such as X(3), and A(Ila), but not in user-defined functions or in formS.

As for output, we will generally be concerned only with, computed numeric'

values' and not with the content of whatever text is also output; thus,

we will consider any two text strings to be equivalent except for the

few problems (e.g., L15-21) fbrwhich the only expected output is text,

and in those cases'we will consider two text strings to be identical if

their-content has the same (English)Aeaning.

To. clarify this notion we will represent the stored data at any

pbint in time as an n-tuple of the values of the n variables to which

values have been assigned.. The order of the numbers in an n-tuple is

'dependent upon the order in which the variables were first given values;

thus, he first number in the n-tuple is the current value of the first

variable to which any value was assigned, etc. As an example, consider

the following simple program:

Example 1. 1.1 SET .I = 1

1.2 SET X . I*2

1.3 TYPE X

1.4 SET I . I+1

1.5 TO STEP 1.2 IF I < 3

The first variable to be used by this program "is I, so the value of I

will 'always appear as the first number in the n-tuple representing the

stored data. These n-tuples, in the order in which they occur, are

(1)

(2,2)
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(2,4)

(3/4)'

We will also be interested in the output, and how it fits into the above

sequence, and will,.represent the sequence ,of stored data and output as

follows:'

(1)

(1,2)

Output: 2

(2,2)

(2,4)

Output: 4
4

(3/4)

0

y
ti

The above sequence represents what we will call the algorithm for the

progpam in Example 1. Example 2 is another program Isihich differs from

Example 1 only in the IF clause used in the fifthltep.

Example P. 2.1 SET I 1

;ET X , Tx2

2.3 TYPE X

2.4 SET I 7+1

P.5 To STEP 2.2 IF I G 2

If we write the algorithm for Example 2, we find it to be identical with

that for Example 1. Hence, the two programs are algorithmically equiv-

alent. Notice, however, that these two programs are not formally

equivalent since the expressions'I < 3 and I < 2 are not logically

equivalent. Our third example is a program that is formally equivalent

i.



to Example 1 but not algorithmically equivalent. (As we will see later,

1 three programs are functionally equivalent.)

, Example 3. 3.1 SET I 6

3.2 SET X = Ix12

3.3 zr = I+1

3. TYPE X

3.5 TO STEP 3.2 IF I < 3

This program is simply Example 1 with the third*and fourth steps inter-

changed. By Rule 12 for formal equivalence, we find Examples 1 and 3

to be formally equivalent. However, the algorithm for Example 3 is

(1)

(112)

(2;2)

Output: 2

(2,4)

(3,4)

Output: 4

Which is not'identical to the algorithm for Example 1.

of

is

The examples above are too simple to fully illustrate the concept

algorithmic equivalencesince they do not use input data. Following

a simple example of a program that uses a single numeric input.

Example 4. 4.1 SET Y= X IF X>=0

4.2 SET Y = -X IF X < 0

4.3 'TYPE Y

For this program the sequence of stored data and output depends upon

the value preassigned to X, the input variable. For example, if X is

" 113

120



1
-5 the sequence

Ottput: 5

For each 'slue of .X there is a fferentsequente and it is the entire

,

set of suCh sequences that determines the algorithm.

0

AlgOrithmic equivalence, as defined above, is slightly more powerful,

for theset of programs under, nsideration than formal equivalence.'

There are an average of 3.6 equivalence classes per .problem as'compared

to the five equivalence classes for formal equivalence and the. t %

classes Porjormal-identity. There is an average of 6.1 programs\pr

class, Whereas formal equivalence yields 4.3 programs per Blass and

formal identity 2.7 programs per class. The classes under algorithmic

equivalence are labeled. A
1,

A
2,

etc., in Appendix A,,wnich lists the

classification of every program in the data.

.The foukth, and last, equivalence relation used, in classifyirig

student-written programs ie functional equivalence. Tn determining the'

function of .a program we consider only the output 'and nut the foreof

the program or the values of any' variables; other than input and output ,

variables. As with algorithmic equivalence, text in which nue.ric

/
results are imbedded is ignored; only for those few prt'6grams whose out-

put is non-numeric do was consider the text that Wp/rinted. Also, as

for algorithmic equivalence, numeric results ar/rounded to three

significant digits;. Functional equivalence ijf3 the simplest nnrl the most

powerful of the four methods, of classifica n. There nrP an averago/if

1.7 equivalence asses per problem, with,a ge of 13.1 piograms
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in each class. or 14 of the 25 probleMs all of the Student-written

//1;rograms we functionally equivalent.

'1Fr the wide variety of possible methods of classification for

pro we have chosen fopr to study in. some depth. In choosing these

ur methods, we have been guided by the ebIliseing constderations. -

(1) We wanted to use equivalence relations that conformed to intuitive

notions of program equivalence. (2) The equivalence relatiOns should

show considerable. sp ad in their' "grouping power" overthe set of data-;

that Is, the weakes of the relations 'Should provide-Oniya minor reduc-
,

: tion in the number of types, whereas the strongest should- come close to

grouping all programs into a single.class. (3) The equivalence relationd

should be mathematically defensible, in that the concept Of 'equivalence

is well-defined.'independent'ef the datg. in relation to -('3) we would'

also have preferred to exhibi,t)equivalence relations for which a decision

procedure could be defined. Except for I, forffial identity, our defini,-/

tions do not satisfy.t/hts requirement,,and we saw no'way of satisfying

thip without seriounly violating either (1) oy (O. By defining formal ,

equivalence more strictly, in particular by suitably re:Arict,ing 41.11)=.

stitution of algebraic expressions, we could have provided a de inition

that would admit of a decision proaedure. For Vuture ntudies we

,recommend that this approach be/Oxplored in more' depth. Our recommenda-

tion for this is based on the, feeling that formal equivalence most nearly

appioanhes the intuitive notion of equivalence exprensed'by stvdento in

phrased such'as "these two programs are really the same" or "these two
/

programn may do the name thing but they do it quite differently." A

programming comultant, automated or human, who in trying to help a
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student complete a partially written rogram or debug a faulty program,

would behest likely to be effective i he (or it) can guide the student

towards a formally equivalent correct lution. An automated conuitant

.could.do this only if it were capable of\determining to which formal

equivalence class the student's partial sOlution belonged. In other

words, the consulting 'routine would neecladvision procedurefora

forMal equivalence relation that extended to incomplete and incorrect

Q

as well as correct solutions.

Although three of our:four equivalence -relations do not admit.Or

)1;eCision prpcedures, requirements (2) and (3) were Weal:satisfied.

Whether or not requirement -(1.)--that the equivalence relations are in-

tuitively valid -. -is satisfied is left' to the reader to decide. ° In

connection with this we mention several other possible means of classi

fication that'could have been used. Formal identity and formal equivalence,

for instance, are but two of a very large number of equivalence relations,

based on subP.i-itution or semantically equivalent parts of programs. Any

one of the substitution rules defined .above, car any arbitrary set of

those rules would' define an equivalence relation Ther.&arealso a

large number of applicable substitution rules that we did not list. One,.

for example, would allow the permutation -of :t1;In adjacent DEMAND commands.

Another would allow the substitution of

for

SET x e

TYPE x

TYPE e

where x is a variable that does not occur in e or elsewhere in the
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.program- One could also devise more complicated rules'of substitution,'

such as he substitution of iterated subroutines for certain kinds of

I

loops. We did not use the last-mentioned of these possibilities because
.

. .

4 felt that such a substitution would allow us to equate programs that

students feel to be quite different. As for the other two possibilities

above, we did not use them (and many similar rUles) becNse there was no

- o. Q A tOr
instance in the. data where they'could-be 'applied; all of the 15 substitu-.

4

tion rules listed for formal equivalence were actually used in classifying

the data.

Besides the many kinds of formal equivalence relations that could

be used, there are.a numberof possible variants on algorithmic and

functional equivalence. We might, for example, have differentiated

programs do the basis of the output text; in studying programs written

in languages with string manipulation features, such distinctions would

be of more importance. In defining algorithmic equivalence, we considered

the 'sequence of values for all variables used by the program; for' more

re
complex programs than t ...

found in the data analyzed here, it might

be wise to exclude va i fables bound in subroutines or even variables

bound in simple loops. For block structured languages only global vari-

,

ables might be considered. As for functional equivalence, a more powerful

equivalence relation could be defined by considering functions to be

equivalent if they differed by at most a fixed number of values.

In summary, out of the wide variety of,possible, well-defined equiv-

alence relations, we chose four- that were Sufficiently different to

_illustrate the spectrum of possibilities, guided in our choice to a large

extent by intuitive appeal. In the next chapter we will analyze the

effects of each of these equivalence relations on the given set of data.



CHAPTER VIII

Diversity of Solutions

In looking at programs written by'students (Appendix B) one-is struck

by the fact that for some problems 'studen(ts prqduced ry similar

looking programs, whereas for others there seem to be tzwT points of

similarity. In this chapter we devote ourselves to the study of the

diversity of programs written by stilldents and attempt to. explain why

there is more diversity for some problems than for others. To ad this
40/.`

we will first introduce a suitable measure of diversity and then irlyed-

tig he statistical relationship between diversity and various

easurable qualities of the problems and the curriculum.

The-amount of diversity obs rved in a set of solutions to a given

problem is dependent not only upon the solutions themselves but upon

one's notion of similarity, or equivalence. Thus, for different equiva-

lence relations the observed diversity may be different even for the

same set of data. In this study we are Concerned only with the four

concepts of program equivalence discussed in the preceding chapter, and

as a result will I've four different definitions for diversity: diversity

of function, diversity of algorithm, diversity of equivalent forms, and.

diversity of identical forms (where, by "identical" we mean formally

Identical as defined in Chapter VII).

Since the measure of diversity used here is not widely known, we

discuss it briefly before describing the statistical analyses. A more

complete and precise mathematical discussion of the measurement of

diversity is given in Appendix C.
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Suppose 4 is a population that is partitioned into k classes, and

that the probability that an element is in the i-th class is pi for each

= The diversity of 1, for the given method of classifica-

tion, is

8 . 1 - .

l=1

The value ,of 5 will be between 0 andll, and will be 0 only if all. elements

'of AS are in a single class. _For alixed value ojc, he largest value
,,

..

of 5 occurs when the pits a equal,-that is, when the members of J are

evenly distributed among the c sses. For an even distribution; the

value of 8 increases with an increasing number of classes, ap aching.'

1 as a limit.

Let S be a sample* of size N f m the population and let ni be

the observed number of occurrences of\\the i-th class for i = 1,2,...,k.

ni

Then pi can be estimated by 1r , and it would be natural-to define the -,

sample statistic for diversity to be A A :

k
A,

d = 1 - >-----
A

\2

N.
ir.a.

It transpires, however, that as an estimator

biased, so we define

^ N
d = d

the, 'statistic d is
4

*We consider only unordered samples with replacement.
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as the estimator of the parameter S. d, as shown in Appendix CI is a

conSistent unbiased estimator of S.

A little algebraic manipulatio will show that

= 1 _
i=1

TrOm this formulation we see that d attains a maximum of 1 whenever each

member of S is in a- separate. class, that is, whenever each n
i

is- 1. We

also see that the inimum of d is 0, which occurs whenever all members

of the .set .are in the same class.

It-is evident that diversity is independent of the indices used fore-

the p 1s-or n For example, any reordering of the subscripts. of

ni,n2,...,nk would not change the calculated value of d. ,Thus, diversity

is invariant ,under any 171 transformation of the indices, which is all

that is required to assure that the formula is'appiopriate for categorical

scales of measurement.

AlthoUgh we have shown that d is appropriate as a statistic, it

remains tote shown that this formula is an appropriate measure of

diversity. In regards to this question the germane property of d is

that it is the probability that two elements drawn at random will not

be equivalent. As a result, if we remove one element from a more numer-

ous class and place it in a less numerous (perhaps empty) class, thereby

increasing the diversity, the value of d is increased.

As mentioned, the value of diversity is dependent upon the Under-

lying equivalence relation. For the same set of data an equivalence

\s, ^
relation with more grouping power will produce a lower value for d than
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a less powerful equivalence relation. To emphasize the dependence of

diversity on the equivalence relation we will denote diversity of function.

by 4, diversity of algorithm by dA, etc.

Let us now turn to the data to find the amount of diversity for each

problem using four measures of diversity, one for each of the four equiv-

alence relations I, E, A, and F. In Table 20, the statistics for I,

formal identity, are shown; the number of solutions in each equivalence

class is listed for each pro lem and the value o is shown in the

4. A

last column. The corresponding statisties.for the equivalence relations

E, A, and F are shown in Tables 21; 22, and 23. For formal identity,

the diversity ranges from 0.12 to 1.00 with a mean of 0.76. For formal

equivalence the range is even larger--from 0 to 1.00 - -and .the mean is

0.56. Thus, the diversity ofidentieil forms is-nearbi.db$ greater than

the diversity of equivalent forMs. Even with this sizable,change in the

average diversity, tyre are five problems for which there is no dif-

ference between d and d aQd another five for-which the difference is

4
thesethan 0.1; for these 10 problems essentially all of the diversity in

form is due to the trivial variations allowed under formal identity.

Comparing the values of d
I

and a
El

problem by problem, we note that dE

is never greater than di, a necessary consequence of the fact that

formal. identity is included in formal equivalence.

The average value of dA (diversity of algorithm) i$ 0.43, only .

slightly smaller than the 0.56 average for dE. For eight of the 25

^ ^
problems the values of d and d

A
are identical, indicating a strong

relationship between the grouping powers of algorithmic equivalence and

formal equAvalence. This. is in marked contrast to the relationship of
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either of these relations to functional equivalence. For functional

equivalence the average diversity is 0.15, about one-third the value of.

):,

the average of dA, even though six of the values of dA and dF are equal.

For a more precise comparison of the grouping Powers of the.four equiva-

lence.relations, see the correlation matrix for d given in Table 24. All

correlations are high, as might be conjectured from the legical relation-

ships between the equivalence relations. The values of r are all greater

than 0.47 and the highest value, is 0.88 for the correlation between

algorithmic equivalence and formal equivalence.

In scanning the various values of d, we note an increase in diversity

with problem number. This is most noticeable in the case of functional.

'equivalence but is also true for the other three relations. From this

we conjecture that students' programs tend'to become' more diverse as the

students gain experience. The relationship is far from perfect, however,

indicating that other variables also have effect on the amount of diver-

sity. It seems reasonable to suppose that certain problems lehd themselves

more readily to a variety of solutions. Look, for example, at the values

ofciforproblern.22,19;0.93 a = Q.89, a, 0.80,.and - 0.73,d =_
E

all of which are well above Nike averages for the respective equivalence

relations. Problems'id6-6 and L23-7 also-have very high values Of d for

all four equivalence relations. The question is do these problems have

similar characteristics that might account for such a wide variety, of

solutions. On the other hand, it may be that the method of instruction,

rather than the problem-itself, influences the amount of diversity. Some

of the 25 problems contained quite strong suggestions about the form a
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Table 24

Correlation Matrix for Four Equivalence Relations

I
'

A F

I 1 00 0 0.721 0.728 0.476

E 1.000 ,0.884 o.561

A 1.00 0.624

1.00Q

I = Formal Identity

E = Formal Equivalende

A = AlgorithmicEquivalence 1

F = Functional Equivalehce

I
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.correct solution might take;.if students follow these suggestions closely

we would.,expect their solutions to be very similar.

To investigate these and other conjectures we ran four step -wise

AN ^
multiple linear regressions, using dI, dE, dA, and dF as the variables

to be predicted. For-independent variables we used the'10 independent

variables described in Chapter VI: IF, ARG, FCT, REIT, LNG, INPT, LES,

HELP, VOC, and NEW. Recall that these 10 variables measure characteristics

of the problems, the curriculum, and the expected correct. solutions

(listed irr Chapter II), and are independent of the data.

We have already discussed, in Chapter VI, the correlation coeffi-

cients for the various-peirs of independent variables. Before'giving the

I

results of the linear regressions let us look at the correlationd between

the independent variables and the amount of dive'rsity. The correlation

coefficients are shown in Table 25. The first point of interest is that

there are a large'number of quite high values; 11 of the oefficients

have (absolute) values greater than .5. Secondly, the signs of the

coefficients are constant across the different definitions of diversity;

from our knowledge-pf the logical and statistical relationships between

A

the four equivelence'relations this is not surprising. We next note-that

the three independent Variables that correlate most highly with diversity

(on the average) are LES, REIT, and VOC. As we noted before these three

variables are also highly correlated with one another Or! > .6). Al-

though these three variables correlate with diversity most highly on the

average, it is notnthe case that they correlate most'highly with any

given measure of diversity. Both IF and HELP are more highly correlated

with 2
I

than any of LES, REIT, or VOC. IF and LNG are the most highly

correlated variables for d
E

.
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.Table 25

Correlations Between Independent Variables

and. Four Measures, of Diversity

Independent
Variable a

I

Measure of Diversity

d
A F

IF 0 341 0.559 0.286 0.189

ARG 0.148 0.286 0.307 '0.583

$

FCT .0.262 0.242 01412 0.114

REtT 0.292' 6.428 0.568 0.658

LNG 0.189 0.575 .. 0.416 0.065

INPT -0.067 -0.423 -0.239 -0.204

LES. 0.306 0.501 0.566 0.664

HELP -0.335 -0.355 -0:389 -0.022

VOC 0.235 0.544 0.501 0.570

NEW -0.250 -0.262 -0.264 -0.O85
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It is also of some interest to look at the pairs for which the.cor-
.

relation is law, The average values. of r ,for INPTiNEW, and HELP

are all less than 0.3. Also the correlation between LNG and dl; is less

than 0.1.

A more revealing picture of the relationships between the independent

variables and the four measures of 'diversity is given by the results of

the multiple,regressions. The. derived linear models are given ih Table

26, and:a summary of the step -wise regressions'is.given in Table 27. 'The

amount of variance in diversity-accounted for.varies-from 56% to ,80%L

be'sf-Tit, ng for functional equivalence and the -Poorest for formal

_
-

identity4-.Thus, using the same bet of ependent variables, we 'obtain

somewhat better predictions of diversity than of problem difftedIty-
.

(compare Table 18)'. If we 'look only at the amount of variance accounted

for by the first five variables to enter the regressions, we find that

we can account for over 60% of-the variance for three of the four measures
4

of diversity (excluding dT)., PP

The order in which the independent variables antered,into the re-

ssions is different.in all four c ses. But it is instructive to note

/
that for dI, d-

E
and d

A
the firSt fi4e variables to enter are identical.

For these three cases the first five ariablea are IF, FCT, REIT, LNG,

and HELP. Three of'these, IF, REIT, nd LNG, are among the first five

variables to enter into the regression\for dF. ,Taking all.things into

consideration it is probable that REIT'\and IF are the two most effective

variables for the prediction of diversity. For both of these the rela-

tionship is direct, that is, an increase in the value of REIT or of IF

will cause an increase in diversity. Thusl'in predictingdiverSity, the

1314 141



Table 26

Linear Models for the Prediction of Diversity

a
I

x loo = 68 + 97 IF 7 ARO + 20 PCT + 8 HEIT - 2 LNG

- 0.2 INPT + 3 LiS - r3 HELP - 8 VOC - 4 NEW

dE X 100 = . 244 87 IF + 3 ARG + FCT + 15 REIT - 1 LNG

, g

- 3 'INFT- - 0.4 LES - 10 HELP + 1 VOC - 10 NEW .'

' n

ti% X 100 = 4 + 60 IF + 26 POT +. 26 REIT + 0.9 LNG

- 0.4 INPT + 3 LAS - 8 HELP - 6 VOC.- 6 NEW

dF X 100 = - 27 + 62 IF + 11 ARG + 5 FCT + 30 REIT - 3 LNG

+ 1 INPT + 0.8 LES +10 NEW
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most infltential variables are (1) whether or not loops or subroutines

are required, and (2) what proportion of the commands are likely to be

conditional. Eecause)of the importance of conditionals, loops, and sub-

routines in programming, this is-not a surprising result. The third

most influential variables in predicting diversity is LNG', the length

of the expected - correct- solution. All three of these variables (REIT,

IF, and LNG) are based on-characteristics of the expected correct

solutions. To some extent they depend upon the context of the problem,

but they are more largely dependent upon the problem per se. In contrast,

tweof the four most influential. variables in the prediction of problem

J difficulty are LES and HELP, both of which are entirely dependent upon

the curriculum.

Although LES made little contribution to the first 'three.diversity

v
regressions, it did enter firat into the regression for So accounting

for 44% of the variance in diversity of function. Thtl, at least one of

the diversity predictions is highly dependent upon a curriculum variable.'

.

.

HELP, however, did riot enter into the dFregreo3ion at all.. In the other

three diversity regressiom:.HELP was among the first five variables but

did nct contribute as.much, on the average, as the other four variables

(IF, FCT, REIT, LNG).

In summary, IF and REIT are the two most important variables for

the prediction of diversity and problem difficulty. Further, the pre-

diction of diversity depends:more upon the programming problem itself

than upon the context in which the problem is found, unlike problem

difficulty, which is more dependent upon Curriculum context; the excep-

tion is in the prediction of diversity of function to which LES made a

substantial contribution.
137
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We began this discusSion with the conjecture that diversity increases

with problem number. The correlations "between LES and the four measures

of diversity (average r > .5), tend to.substantiate this view. However,

...the more penetrating analysis provided by the multiple regressions throws

this conjecture into doubt for three of-the four measures of diversity

(dI, dA) for which we Can conclude that the implied relationship
0

,

with LES is spurious and is a result of the merely statistical relation-

ship between LES and more effective variables such ad REIT and LNG. For

the,fourth measure of diversity the multiple regression confirmed the.

conj= ture that LES is closely related to diversity., We feel that a

per a t provide evidence for the rejection of this hypoth-
.

sis if another cur culuM or othe24-silts of programming problems were

chosen for study.

.
We also conjectured that the HELP variable would be important in

predicting diversity since it measures whether or not a nearly equivalent

program is displayed as an example on which students may model their

solUtion. Unexpectedly, the linear regressions did not support this

conjecture strongly. For only one measure of diversity did HELP play an

effective part. For algorithmic equivalence HELP entered into the re-

gression at the third step, increasing the value of r
2

by 8%. For

functional equivalence, HELP did not enter into the regression at all,

indicating's contribution of less than 0.1%. Since HELP is a curriculum

variable that is clearly under the control of the curriculum designer,'

.

it might be fruitful to conduct a future experiment in which different

treatments are used Tor different groups of students.

138
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Before closing the discussion of diversity we want to preseht one

further comparison between 4iversity and problem difficulty. For problem

; difficulty we use Only oUr primary measure, Ml, the proportion of correct

responses given on the first trial. Following are the correlations be-
.

tweeh M1 and each of the four measures of diversity,:

21.: _0.584

dE : _0.710

dA : -0.725

dF : _0.463
n.

These correlation coefficients are all negative, indicating that diversity

increases with difficulty (recall that proportion .correct is inversely.

related to problem difficulty, by definition). Furthermore, all of the

^
values are substantial; for -E

d_ and apt, in particular, we could account

for half of the variance in diversity from a khOwledge of difficulty.

In one sense these correlations are misleading. It would be easy to

fall into'the trap of assuming that students would do better if less

diversity were allowed by the curriculum.' Aosuming that we could control

the pmount of diversity, it seems likely from the results of the multiple

regressions that we could du this only by changing the problems them-

selves rather than the vray in which they were presented; this; conclusion

is based on the fact that divel.sity seems to depend more upon problem

variables (IF,. REIT) than upon curriculum variables (LES, HELP),. _Thus,

we could degrease the-diversity, and increase the proportiOn correct, by
A

giving fewer problems that required the use of conditions or loops. If

we did this, would we thereby increase the total learning of programming?
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2'

We do not intend to pursue this further here and have only-tentio ed

the relationship between difficulty and diversity to point-put tha the

.queetion of trade-offs is a complex and subtle one.that needs udy in

much greater depth.
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A

CHAPTEfi TX

Summary

In this paper wehaVe presented a detailed study-of 747 computer

programs written, by 40 students in response to 25 programming problems

given in a computer-assisted course in programhling. The 25 problems

vary widely in,kind and difficulty. Some of theM are no more than

"finger exercises" designed solely to provide the student with on-line

practice in the use of newly introduced syntactic features-of the pro=

gramming language. Other problems are sufficiently complex logically.

Ythat an experienCed programmer must use care to arrive at a correct

solution. The standard solutions to the 25 problems (which we called

"expected correct 'solutions") varied in length from 2 to 13 commands.

Ten of the 25 problems required the use of one or more conditional com-

mands, an six of them requirea the use of either subroutines or loops.

Most of the problems required' a program that performed only one mathe

matical function but three of them required more than on function to be

performed C.)n the input lata. For most problem::: test values/for input)

were spedfled in the problem statements; however, for eight problems

either no input was required or the students were'frce-to choose appro-

priate values to use in testing their programs.

Eleven of the problems required the use of a newly introduced lexical

item or syntactic feature of the language. The curriculum offered vary-

ing amounts of guidance to the student. For four of the 25 problems,. a

complete similar program was shown to the student as a model from which

he could work; an additional seven problems displayed a part of a program

that could serve as a model.
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The. above mentioned characteristics of the problems and curriculum

context were used as independeht variables for step-wise multiple regres-

sions (to be discussed below). Other independent variables used in the

regressions measured the position of he problem din the curriculum, the

amount of AID vocabulary so far introduced in the course, and the number

of arguments required by the mathematical function performed by the program.

Since students were not required to try to solve every problem, we

did not expect to find 40 '(students) X 25 (problems) = 1000 attempted

solutions. We did find that a high proportion of the students attempted

to solve the problems - -75% on the average. Some of the attempts made by

students were cursory but on the whole we concluded that most made a

serious effort; the total number Of commands given by students was 7063*

and the average number of commands given by the, students who attempted

the problem was nearly twice the number needed for an economical Solution

to the problem.

Many of the commands given by students were in error, and, in fact,.

a large number (26%) were never executed, either because they contained

errors that caused an execution error or bedause the student mademo

effOrt to use the commands. (He may, for example, have replaced the

command with another before he executed hisliprogram.)

In studying the kinds of commands given by students, we Classified'

the commands according to the AID verb used and found that we could pre-
. .4 0

.
dict the iiroportions:of the types of commands quite, well simply from the

*on first trial
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corresponding proportions.,found in our expected correct solutions. The

amount of variance accounted for by the simple linear model was over 90%.

When the commands giyen by students were classified as either direct

or indirect, we found that nearly half (45%) of the students' commands/

\were direct; in comparison, only 28% of the commands inthe expeoted

Correct solutibns were direct.

In a 'study of the distribution of correct solutions, we found that

57% of the attempts were successful on firsot rial. From.other studies

we know that the average for all exercises in the course is greater than

75%, and thereby conclude that the set of. problems chosen for study here

were considerably more difficult -than the average exercise in the' course.

In addition to a simple correct-incorrect system of grading, we used

a method of assigning partial credit based on the number f commande used ,

in a correct or partially correct solution. We found

fewer than half of the typed oommands contributed to a correct solution.

on the average,

Of the commands that were executed, two-thirds tor ributed toward a
,.

correct solution.
1

For a third measure of correctness, we u
G.

ed a correct-incorrect

classification in which errors in algebraic formulas were disregarded.

The average proportion correct "up to" algebraic errors was 64, ao r.

compared to the 57% for a strict correctoincorrect measure. Although

the correlation between these two meas res of correctnesb was cpciite high ,

(r n .90), there were several proble is for which the differences were

extreme.
lI

A detailed analysis of error.; was also undertaken. IS/foUnd 1090

overt errors in the 7063,comman s given by students'. -thirds of .



these were syntax errors and one-third were semantic..- In looking ttt

syntax errors we found the most numerous errors (about one-third) to be
A

either typographical errors orAncomplete commands, We also found that

a disturbingly-high propor;tion of the syntax errors (perhaps 20%) were

what we called "errors of bvergener lization," that is, errors that were

apparently caused by an ovprgener lization Of the syntax rules. These

", errors were reasonable constructions- in thesense that the intended

meaning was perfectly clear; in fact, in most cases, these erroneous

commands could have been parsed by a -slightly more. sophisticated inter-
,

Preter. It is knoWn'that children, in learning natural languages, over

generalize on the rules-that govern the syntax and usage of that language.

Such examples range from_ generalizing the rules for creation of inflections

("goed".as the past of "to go" instead of the irregular but correct "went°,

to structural errors and the misapplication of constructions in pragmatic

contexts. The high freqUency of the same type of error in thisostudy,

concerned with the learning of a formal as opposed to a natural language,

,p.uggests that there are common governing principles for the acquisition of

bothh. An awareness_ of the tendency'of students to overgeneralize from

specific rules of syntax could enable programmers to produce high level

languages that could be more readily learrfea. For example, if the AID

interpreter allowed the use of multiple arguments with SET and DEMAND

exactly as it did for TYPE and DELETE, many errors would have been avoided.

In studying semantic errors we found a rather large proportion

(over 20%) of algebraic errors. Some of these errors seemed to stem

from ignorance of the correct algebraic formulas and some from incorrect
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translatioi into AID notation. Most incorrect translations were the.

result of a poor understanding of the hierarchy of-operations. Dummy

variables and their use in the definitions of functions also gave rise

to a number-of errors: In general, logical errors, either in IF clauses

or in the sequence of execution, were fewer than anticipated. From this

evidence we concluded that in all likelihood students are less mathe-

matically_sophisticated than presumed by the curriculum; consequently,

in a subsequent revision of the course we included more instruction in

mathematics and delayed the introduction of user-detfined functions until

quite late in he course:, A future yomparison of semantic errors for

the two versions of the course would be needed to establish the accuracy

of our conclusion that much of the difficulty is curriculum-oriented and

can be controlled by the currulum writer.

The descriptive statistics merited above were used in defining 19

different measures of problem_ difficulty. Three were measures of pro-
.

portion correct. Ten were measures of number of errors and error rates,

for both syntax and semantic errors as" well as total errors. Five

measures of problem difficulty were measures of-the effort expended and

I

the final measure was the propOrtion of students who attempted the problem.

,In comparing these 19 measures we found that some pairs, such as the first

two measures of proportion correct, were highly correlated) but there were

many pairs for which the correlation coefficient was essentially zero,

leading us to conclude that the measurements are along 'several different

dimensions of problem difficulty.

We selected six of the 19 measures of problem difficulty for more

intense study. 'These were (1) the proportion correct on first trial,,

1-1;5
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(2) the proportion correct up to algebraic errors, (3) the syntax error

rate.; (4) the number of students who made semantic errors, (5) the ratio

of commands typed to the number of commands needed for a correct solution,

and (6) the number of students who attempted the problem. Except for the

first two of these sixmeasures the correlations between pairs were quite

low, By means of step-wise multiple linear regressions we derivearlinea-''
'

models that predicted problem difficulty'frOm measurable characteristics

of the problems, the standard solutions, and the curriculum context. The

same set of 10 independent, variables was Used in each of the six ivgrea

sions. These 10 variables measured such characteristics as the expected

proportion of onditional commands (IF),.the location of the problem in

the cculum (LES), the amount of guidance offered by the curriculum

--(HELP), whether or not loops or subroutines were required (REIT), the

length of an economical correct solution (LNG), etc. For four of the six

selected measures of problem difficulty, the linear models derived by the

regressions were quite satisfactory, accounting for two-thirds or more of

the variance. The best fit was for the proportion correct up to algebra,

which we also felt was the best measure of programming difficulty per se; .

this model accounted for 85% of the variance. The two linear models that

predicted the syntax error rate and the number of students who made se-

mantic errors were less than satisfactory; both of these models accounted

for less thanjialf the variance. The independent variables entered into

the regressions in different orders for all six regressions. However,

on the average, it appeared that the most:influential variables in pre-

dicting, problem difficulty were (1) the position in the curriculum, (2)

the expected proportion of conditional commands, (3) whether or not loops

11+6



or subroutines are required, and (4) the amount of guidance offered by

the curriculum. The first and fourth of these can be characterized as

curriculum- dependent variables, whereas the other two are problem-dependent.

We next looked more closely at the kinds of correct solutions pro-.

duced by students. The 551 correct or nearly correct solutions given on

.first trials were classified according to four sets of criteria; Two

methods of classification were based on the formal, or static, charac-

teristics of the solutions, and two were based on functional, or dynamic,

characteristics. These four methods of classification were referred to

as formal identity, formal equivalence, algorithmic equivalence, and

fuRctional.equivalences We defined two programs to'be formally identical

only if the differences between them were such minor differences as the

use of different letters for variables or the use of different part

numbers for naming programs. Less trivial formal variations were allowed

for formal equivalence. For algorithmic equivalence, we considered only

the sequence of actions of a program and disregarded its form. The last

equivalence relation, functional equivalence, was-defined solely in terms

of input and output; both the form of the program and the sequence of

internal states were ignored.

The four equivalence relations exhibited considerable variance in

their grouping power over the data. There were an average of eight types

of solutions per problem when the solutions were classified by formal

identity. Under formal equivalence, the average number of types was five:

Under algorithmic equivalence, the average was 3.6, and under functional

equivalence, 1.7.
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Using the four equivalence relations discussed above, we defined

four measures of diversity Of solutions: diversity Of function, diversity

of algorithm, diversity of equivalent forms, and diversity of identical

forms. The measure of diversity we used is akin to variance but, unlike

.variance, is appropriate for categorical scales of measurement. This

measure--or rather, its unbiased estimator--is given by the formula

n
i
(n

i
-1)

2 . - ffcrr
i.1

where N is the total number of solutions n is the number of solutions

in the i-th equivalence class. (or of the i-th type), andk is the number

of equivalence classes (or types). As this measure-Of diversity is not

widely known in psychology, we have included a precise mathematical dis-

cussion of its derivation and properties in Appendix B.
11

Once again we used the tool of the step -wise multiple linear regres-

aion to define predictive models for diversity. For this, we used the

same set of 10 independent variables used in the prediction of problem

difficulty. Ali four of the models accounted for more than 50% of the

variance in diversity; the best fit was for diversity of function, in

which 8o% of the variance was accounted for. In examining the order in

which the independent variables entered into the regressions we concluded

that the three most important variables for the prediction of diversity

are (1) whether loops or subroutines are required, (2Y the expected pro-

portion of conditional commands, and (3) the expected length of the

solution. All three of thess variables might be characterized as problem

variables rather than'curriculnm variables. mh4a contrast to our findings
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for the prediction of problem difficulty, in which two of the four most

important variables were curriculum-dependent, leads us to conclude that

problem difficulty could be more easily manipulated by the curriculum

designer than could diversity. Another comparison of interest between

the two sets of predictive models is that there are two independent

variables that contribute largely to both. These two variables are .(1)

whether loops or subroutines are required and (2) the expected proportion

of conditional commands. In view of the importance of conditionals,

loops, and subroutines in programming, this is an intuitively satisfying'

result.
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APPENDIX A

The Programming Language AID

The subset of AID that is described herein includes that part of

the language that is taught-in the course "Introduction to Programming:

AID." The following description is an excerpt from "100 Programming

Problems."*

*Friend, J. E. 100 Programming Problems (with a description of the

programming language AID). Institute for Mathematical Studies in the

Social Sciences, Stanford University, September 1973.
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AID Commands and Programs

Numbers And Algebraic Expressions

Algebraic expressions in the programming language AID follow ordinary

algebraic notation quite closely. The letters A, B, Z are used as

variables, and the following symbols are used fot arithmetic operations and

grouping:

addition

subtraction

multiplication

division

t exponentiation.

. absolute value

) parentheses

In forming algebraic expressions, juxtaposition cannot be used to indicate

multiplication; the expressions 2x and xy must be written as 2*X and X

AID notation. Algebraic expressions, must be given as a linear ng of

symbols, which preclude.; the use (4 tar! ht,rizontal at; indicator of divt-

a a4-1,

sign; T.) must he written A/B, and .171.7 mu: J. be written as (A 4B)/(A-B).

Neither can sulmcriptc or superscript.:; be used; ziis written as X(I) and

y2,
is written as '02.

Grouping is indicated with parentheses just as in ordinary algebraic

notations, and parentheses may be imbedded as desired. If parentheses are

not used. arithmetic operations are performed in this order:

t

* and / from left to right

+ and - from left to right

2



Thus, exponentiation is always done' first (unless "parentheses are used to
o

indicate otherwise), then either * or /, and.finally either + or -; If two

operations with the same order of precedence appear, they are evaluated in

left-to-right' order;.in the expression X/Yni/W,..the first operation t6 14(

performed will be X,/Y.

. AID numbers may be'written in integer;form (275) or in decimal form

(5.87) 0.01, .72). Numbers are limited to nine significant digits and must

be less than 101 0 0A.n absolute value.. Numbers may also be written in a Tom

of scientific notation that is a.direct translation of ordinary scientitid

. notation. For example, 2.3076 X 105 is,written as 2.3076 * 10t5, Since

the slahh.(Y) is used to indicate division, an expression like 2/3 is read

as "two divided by three" rather*then,".twothirds." Because of this, an

expression like Xt2/3 means x2 i 3onot X2/3; to write x2/3 in AID notations

use Xt(2/3).

Negative"numbers are indicated by a minus sign: -2.7. When Negative

numbers are used in certain combinations, such as 2 + (-3), the negative

number must be enclosed in parentheses; to be on the safe side, always use

parentheses around negative numbers.

The variables A, B, C,..., Z may be used for numbers, as indicated above.

They may also be used as indexed (subacripted) variables to identify lists

of numbers or arrays of numbers. The list x
1

x
2'

... , x
n
is written in ATD

notation'as X(1),.X(2),..., X(N), and the entire list is then referred to

simply as X. A two-dimensional array (matrix) of numbers may be identified

by a variable using two indices: a is written in Alp as A(I,J). Up to 10

ndices may be used (fo up to 10,-dimenaional arrays). Indices may be'given

as numbers, sr 'Variables, or algebraic expressionsi'X(12) X(NsJ) and

/
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p.

X( 2*I+3, J /1). Regardlgss of how-th indices are indicated they must have

A .

limited to -250 to 250, including zero. Thus, the

has 501 members: X( -250) X( -249) I. -l) X( 0);

. A two-didensional array could have 501 X 501

integer values and are,

longest list of numbers

X(249))X(250)

members, etc.

To summarize, here are

AID equivalents:

5x
2

3y4

Aii

a+b+c+d

x3

In general, spaces .may

some examples of algebraic expressions and their

. 5*Xt2 3*Y017

Zt (1/2) or- Zt0.5

ix-yr

X(1) '+ X(25 - X(j)

(.4B+C+D)/4..

be used whenever desired in algebraic expressions.

The expression 54ki4 may a.l.A.) be written 5tX 4 4 uz 5 4 X + 4 or 5*'Xi-4.-

The xceptionp to this rule arc in indexed variables and, as we shall. see

let r, in function notation. Expressions like X(5') and A(112) must be

(

tten without a space between the identifier and the opening pardnthesis;

5) or A (1i2)' will cause an error message.

1.61

4
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The Form, of AID 'Commands

AID commands are /quite similar to English commands:

TYPE X

,SET Y

8T01;
,/

Each 'command begins with a verb (TYPE, SET, STOP) and the form of the rest

of the command depends upon the verb that is used. The verb TYPE, for

example, may be followed by any algebraic expression (and the result will

be that the'expressiOn is evaluated and the value typed on the user's tele-.

.1typewriter):

TYPE X - 2 .

TYPE 3/(4+2/7)

TYPE/Xt + Yt2

,

Some commands, like STOP, may consist of only ope word, but moat commands

have either variables'or algebraic expressions or equations or other kinds'

of arguments following the verb. Some commands also have optional modifiera,

;which are phrases that can be added to the command to.modify its meaning.

For example, the TYPE command may be modified by an IN FORM phrase:

TYPE XIN FORM 12

9,

where Form 12 specifiesAhe form in which X is to be typed. (This will be

explained more fully below.)
cr

With one exception (FORM), AID commands must be given in one line; a

line is terminated by the user by, typing the return key on the teletypewriter.
o

There are two kinds of AID commands: direct commands and indirect com-

mands, Direct commands will be executed as soon as they are given, whereas

indirect commands are stored and will not be executed until the user gives



an orderto'do so. Many AID commands may be used as either direct or in-

direct commands. To indicate whether a:command is to be a direct command..

or an indirect command) "step numbers" are used before.sindireet.cammands:

1247 TYPE 15/16 1/32

This command will be stored rather than, executed immediately) and the step

number may be used in later references to the command. When the user wishes

to have the command executed, he gives a DO command like the following:

DO STEP 12.7

Step numbers are decimal numbers between 1 and 109 , and) like all

numbers) are limited to 9 significant digits.

When indirect commands are stored, they are grouped into "Rarts"

according to the. integer portion of the step number. 0ommands numbered

23.2, 23.7, 23.84, and 23.001 are all grouped together into "Part 23."

Indirect commands may be executed singly:

,D0 STEP 23.2

or they may be executed in groups:,

DO PART 23

When the above command is given, all the steps in Part 23 will be executed,

in numeric order. When Part 23 is exhausted, the execution will, cease; even

if there are steps numbered 24.1, 24.2, etc., execution will not automatically

proceed to Part 24. A-oet of stored commands, to be executed
7

as a grcup) is

called a "program." A program may 'consist of a single part or, by the use

of:branching commands as explained below, several parts.,

Although most AID commands 'can be used either as direct 'commands or in,

direct commands, there are a few that may be used only in one; form. Tab.

lists the AID commands and shows which' can be used, direetly and whichindirect
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Table).

sect and Indirect AID Commands

Command

.May be used May be used

directly indirectly

DELETE Yes Yes*

DEMAND, No Yes,

DISCARD Yes Yes*

DO , Yes Yee

FILE. Yes
/X:es*

FORM Yes Yes

GO Yes No

LET Yes Yes

RECALL Yes , Yes*

SET 'Yes ;
ro Yes

SET (short version) Yes No

STOP No Yes

TO No .' Yes

.

TYPE Yes Yes

USE Yes Yes*

*Rarely used in indirect f

164 7



Basic Commends: SET, =PE, DEMAND,TO, and DO

The five commands SET, TYPE DEMAND, TO, and DO form the core of a

basic AID vocabulary. Together withyhe algebraic expression6 described

above, a few standard AIDfunctions, and the conditional clause described

in the next section, these five commands are sufficient to solve any of the

100 problems given in this booklet.

The SET command is used to assign a value to iwvariable:

SET X = 12.7

0 SET K°= 0.002305

SET"M = K*Xt2

The algebraic, expression used on the right of the equal sign may con-
,

tain one or More other variables, but all of the variables used must have

.values so that the expression can be immedWely evaluated. When a SET

Command is executed, the, expression on the right of the equal sign is evalu-

ated and that number is sto d in temporary (core) storage with the specifieA

.identifier (the- variable used oh the left of the equal sign); that stored

-number may thereafter be "referred'to by its identifier. A SET command may _

be used;to "defi'ne a variable in terms of itself." The result of the\ -,

following sikquence of c nds Would be that the number 7 is stored as

SET N = 13

SET N = N 1

SET N =:N/2

sets N equal -6o 13.

adds 1 to the current value of N.

divides the current value of N by 2.

SET may beoubed either indirectly (with a step number) or directly.

,

If used as a direct commandl.the short .form which omits the word SET may

be used:



X = 7 equivalent to SET X = 7

K = 0.07835 equivalent to SET K = 0.078305

SET may also be used with indexed vatiables:

SET X(2,3 = 7

L(5) = 72.31,

sets the element X
2,3

from the array X

Fpal 0 7

sets L
5
_equal to 72.31

.-.

The TYPE command is used with an algebraic expression:

TYPE (X+K-Y)/3

Here again the algebraic expression must contain only variables that have

values (or will be given values before the TYPE command-is exeduted). When

a TYPE command is executed, the value of the algebraic expression will be

calculated and typed on the user's teletypewriter.

A TYPE command can be -given with several arguments, separated by commas:

TYPE X,Y, (x+y)/2

This command is equivalent to the three commands:

43-

TYPE X

TYPE Y

TYPE (X-12Y)/2

Caution: Only two commands, TYPE and DELETE, allow multiple arguments; other

commands' like SET and DO, use only one argument.

The TYPECommand can be used to type text by giving the text enclosed

in quC!itation marks:

TYPE ".TITLE: COMPOUND INTEREST CALCULATIONS"

Other.use of the TYPE command will be described later.

The DEMAND command can only be used indirectly (as a stored command):

20 ,4 DEMAND X
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The DEMAND command uses a single variable as an argUment,;and the result

Hof such a command is to cause the program to halt, type

wait for the user to"type a value for X, and then contihue the.execution of

the program. By using DEMAND commands, a program can be written so as to

ask for the data it need4. A useful variant of the DEMAND command is formed

byappending the modifying phrase AS "text.!' The command

17.9 -LEMAND R AS "INTEREST RATE"

will cause the program to stop at Step 17.9, type

INTEREST RATE.

and wait. for the user td type a 'value which will be assigned the identifier R.

A feature of the DEMAND command that is frequently useful in iterated

programs is that if the user' efuses to give a value for the DEMANDed variable,

and responds simply.by typing the return key, the execution of the program

will halt at that point; thus, seemingly endless loops can be used if they

incorporate.DEMANT.

DEMAND is used solely for input,' SET is used for both input and for

internal computations, and TYPE is used for both computation and output.

Here is an example of a complete program using all three of these commands:

4.1 TYPE "COMPUTATION OF INTEREST AT 4.5%4

4.2 SET 11 = 0.045

4.3 DEMAND P AS "PRINCIPAL"

4.4 SET I R * P

4.5 SET 'T P

4.6 TYPE I,T

k'

10 167



This program would be executed by the command

DO PART 4

and it would start by typing

COMPUTATION OF INTEREST AT 4.5%.

PRINCIPAL =

As soon as the user typed a value for P, say 200, the program would reply

I =9

T = 209

As mentioned, the steps within apart are ordinarily executed in numeric

Order. This order can be overridden by the.use of the branching command TO.

. i
_ -. .

TO, like DEMAND, can be used only as an indirect command. A TO command may

be used to branch to either another step (within the same part or in some

.other part) or to another part:

6.3 TO STEP 7.29 will cause execution of Part 6 to cease and
execution Of Part 7 to commence at Step 7.29.-

16.42 TO PART 8 will cause execution of Part 16 to cease and
execution of Part 8 to commence at the lowest
numbered step.

Although a TO command may be used unconditionally, as shown above, simply to

alter the linear sequence of execution, it is more often used conditionally,

that is, with an.IF clause; as will be explained in the next section.

Several examples of.direCt DO commands have been given above. Usci

directly, DO causes the execution of a specified step or.part:

.DO STEP 7.35

DO PART 84'

DO may also be' used indirectly, as part of a program, to cause the execution

of another part as a subroutine:

11



7,1 SET P = 3.14159

7.2 SET R = 15

7.3 DO PART 12

7.4 TYPE DI C; A

In. this program Step 7.3 calls for the execution of Part 12. Part 12 is the

"subroutine" and the= command in Step 7.3 is the "subroutine call." When

Part 7is execilted,,the sequence of executionis:

Step 7.1

Step 7.2

Step 7.3

All of Part-12'

Step.7.4
ti

Thus, DO as well as Ta'atale used tb'override the- automatic lihear sequence

of execution. The primary difference is that DO calls for another step or

part to be inset -Led into the part being executed, whereas TO calls for a

complete transfer of control' to the part specified. Here are foltr sample

commands; with comments, to summarize the difference betweenDO and TO.

3.6 DO PART 7 gill cause 'all of Part 7 to be executed, followed

ty7the execution of the remainder of Part 3.

3.6 TO PART 7 will cause all of Part 7 to be executed. Execution

will halt at the end of Part 7. The remainder. of

Part 3 will not be executed automatically.

1

3.6 DO STEP 7.5 will cause Step 7.5 to be inserted as a one-step

subroutine. After Step 7.5 is done, the remainder

of Part 3 will be executed. No other steps in

Part 7 will be done.

3:6 TO STEP. 7.5 will cause execution of Part 7 to start at Step

7.5. Execution will halt at the end of Part 7,

and the remainder of Part 3 will._not be executed

automatically. .

12
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There are two modifiers that may be used with DO commands: TIMES and

FOR. The TIMES modifier is used to specify the number of timesHthe required

step or part will be executed:

DO STEP 3.5, 6 TIMES

13.2 DO PART 121 N TIMES

The number of times a step or part is to be iterated may be specified by a
a

number or a variable, or even an algebraic expression, with the stipulation

that the value is a positive integer.

The second modifier, the FOR, clause, specifies values for some variable:

DO PART 4 FOR X = 7

This command is equivalent to the two commands

SET X . 7

DO PART. 4 r

A list of values may be given in the FOR clause if desired:

tIO PART 4 FOR.X = 7, 23.8, 19

This command will cause Part .4 to.be done three times, once for each of the

listed values for X, and is thus equivalent to the six commands

SET X . 7

DO PART 4

SET X = 23.8

DO PART 4

SET X = 19

DO PART 4

The values for the',Variable may be given in the form of a "range specification,"

as in this example:

DO PART 21 FOR A =5(2)13

13



The range 'specification 5(2)13 indicates that the initial value of A is to

be and that A is to be incremented by 2 with each successive iteration

until the value of 13 is reached. That isj; A will take on 'the values 5, 71

9, 11, and 13. Any or all of the initial value, the size of the increment,

and the final value may be given as algebraic expressions, and they need not

be integral. The command

DO STEP 7.3 FOR Y = 3.2(.2)4

is equivalent to

DO STEP 7.3 FOR Y = 3.2, 3.4, 3.6, 3.8, 4

When values of a variable are given in a range specification, the final value

is always used. Hence, the command

DO PART 2 FOR X = 0(2)7

will cause these values .of X to be used: 0, 2, 4, 6, 7..

DO commands with either TIMES or FOR modifiers may, of course, be used

as indirect steps to cause iterated execution of a subroutine.



The Clause

Certain modifiers, such as the AS or TIMES phrases, may be used to

modify specific commands. There is one modifier that may be.used with ani,

AID command, and that is the IF clause. The addition of an IF clause changes

any command from an "unconditional command" to a "conditional command."

Here are a few examples:

TYPE X/Y IF Y > 0

3.2 DEMAND R IF T = A + X

7.3 DO PART 8, 3 TIMES IF X 14w Y + 3

SET Z = X/(Q + S) IF Q + S > X

An IF clause contains the'word IF followed by a Boolemexpression. BoOlean

expressions (also called logical predicates) exivess relationships between

numbers. The following relational symbols are used:

< less than

> greater than

<= less than or equal

>= greater than or equal

equal

# not equal

As in ordinary usage, any algebraic expressions may be used in Boolean

expressions:

'X < 0

X+Yt2#Z
2 > = Z

The Boolean operators'AND, OR, and NOT may also be used:

15



NOT X < .

X<7 AND Y > 8

x > 0 OR X < Y - 2

X # 0 OR y #0 OR Z # 0

(A + B > 0 OR A < 7) AND B := 12

In evaluating Boolean expressions, the Boolean operators are evaluated in

this order (unless there are parentheses to indicate otherwise):

NOT

Arm

OR

When a conditional command is executed, the exe6Ution proceeds in two

phases., First, the Boolean expression Ubed in the. IF clause is evaluated

to determine whether it is true or false. Second, if the Boolean expression

is true, the main clause will be executed.

Any command may be modified by an IF clause. One of the most important

uses of the IF clause is in TO commands; a conditional TO command is called

a "conditional branch" and is the principal mechanism used in writing non-

linear programs, including those with loops. As an example, here is a simple.

program with a loop (this program simply counts from0:to 30 by twos):"

5.1. SET C = 0

5.2 TYPE C

5.3 SET C = C + 2

5.4 TO STEP 5.2 IF C < = 30

5.5 TYPE "THAT'S ALL."

173
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Auxiliary Commands: FORM, LET, and DELETE

Tesidesthe five commands (SET, TYPE, DEMAND; 0; and DO) that are used

in writing simple programs, there are a number of auxiliary, commands that are

ordinarily used as direct commands. Two of'these; FORM and LET, are to de-

fihe forms and functions that will be use by TYPE and SET commands .1.n'

programs; and are thus closey, associated with the programs themselves. The

:other auxiliary commands are used more fo bookkeeping-or ddbugging purposes;

.Ahese are DELETE, the file commands_to, be iscussed in the following section;
. ,

1 m

and the debugging commands to be discussed n the section after that.
o

FORM and LET are used'in'conjunction wi h stored programs. FORM is

-

Used to specify the format to be used for output. Ordinarily; when.a TYPE"

;

command is used, the output ip printed in a standard form. For example,

when the command r,'

TYPE (X + 2)/Y:
.

.. a

,
.

is given; the value will be typed in this form:

(x + 2)/Y =

a number is 10
6 or greater Or if it is less than .004 it will be typed

ill scientific notation rather than decimal form:

(X + 2)/Y = 2.87 .F 10t(-00

(X + 2) /Y = 2.87 * lot8

If the user prefers another form .for output; he may apecify it in a rohm.
,

statement. The FORM statement, unlike other AID commands; requires two

lines; the first line Illecifies the form number (an,integer between 1 and

109 to be used in later references) and the second line specifies the form

itself:

17
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FORM 12t

THE INTEREST IS .-

The location of digits is indicated by the Character 4 apkthe.position
(

the decithal point is shown by'a period. When the form specified above is' to,

be used, the TYPE command is modified by an IN FORA.phrase:

TYPE P * R IN FORM 12

Numbers will be roundedto fitethe specified pAn (which is the easiesivay

P

of rounding numbers to a fixed number of decimal placeis) andit no%ecimal

point is specified, the number will be rounded to the nearest integer: When

specifying,a form, care must be taken to allow "for as many digits befOre .ehe

decimal point as will be necessary; if an attempt is made to type a number

9

in a form that is 'not large enough, an error tessage will result. If the

. 4
number to be typed in a given form is negative, one. of the digit locations

will be taken up by, the negative sign.

,
Any symboIt, including!punctuAtion marks-; may be,lisek in the text of

9

form:

FORM 42:
4

PRINCIPAL +. INTEREST = $

a

NO text is necessary ifthe user wishes merely to print a number in a
.

given,form'and location. 40r.
f

MOre than one number may be provided for, and this is the only way in

which more than one number can beg printed on the same line:

FORM 6:

.4- 4.- 4- 4- WILL EARN $ 4. 4- INTEREST.

To use a form with several numbers0'the multiple-argument form of the TYPE

command is required:

4.3



TYPE P P * R IN FORM 6

The LET.cOmmand is a used in conjunction with stored programs, but
8 _-

may be Used independently for direct computations. The primary use of LET

is in the definition of functiOns, The function f(x) = 3x
2

+ 2x,is defined

in AID as follows:

LET F(X) = 3*Xt2 + 2*X

When the function is used, in a SET or TYPE command, a .valUe is substituted

for the dummy variable X in the expression F(X)

SET Y = F(3)

T)TE F(5) - F(3.7)

The value that is substituted.maybe in the form of 'an algebraic expression,
a

prOOlded such an expression can be immediately evaluated:.

qET N . 2

alYPE F(N/6)

Any of the variables A, B, C,..., Z may be used as function names.

Take care, however, not to use the same identifier for both a real variable
a9

and a function since the first definition will be replaced by 'the second.

Functions ofup to ten variables filay be defined; here is an example' of

a function of thme ifariables: .

LETF(X, Yo Z) (X*Y y*z)/xty*z'

Caution,; Do not use a space between the function name and the openi4g paren-

theses; an expression like F (3) will cause an error message.

A useful, variant of the LET command is the conditional form of LET used

to define functiorie Conditionally. In'ordinary notation, a funCtion may

someti2meci be-defin in this fashion:

dt.0



-2x if X < 0

5x if x >, 0

In AID, this definition,is given, in'. es..0'.hgle line:

LET F(X) =.0{,<.01:1-f2*X4 X"..= 0: 5*X)

which is read "If 0, f.( x1' F -2x; if x.> 0, f(x) = 5x.".

definition, the entire,expression'is enclosed in parentheses, the clauses

,

within the definition are,separated by semScolons, and each clause is divided

into a conditionand an algebraic expression separated from one another by

In the AI

a colon. Any number of clauses may be used; in the above exaMple there

are two clauses.

If the definition of a function is given in ordinary terms with an

"otherwise" clause,

0 if x.< 0

f(x) = 2x if x > = 0 and 3c < 7

5x otherwise

the AID definition does not require a condition in the final clause:

LET F(X) , (x 0: 0; X > . 0 AN X Z 7: "YX; 54(N..)

In this example, the final awe consiot,; only -of the algebraic express on

5*X, which will be used whenever all of the cohditionsn preceding cla

/

fail.

When a function definition id uued, it iu scan ed rrom le24' to right

until a condition that holds is found: Because of this, it is frequent

possible to simplify AID definitions. For example, the condition in

second clause of the above example could be simplified from X > . 0 AND

*< 7 to X < 7

LET F(X) . (X < 0: 0; )C < 7: 2*X; 5*X)

17' 20'
/f
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natiowma ail itself; hence, a variant of the conditional defini-

tioAz'is definition by reCursion. Here, for example, , is the AID recursive

:/aeri tion of the factorial function X!

one ca

T F(X) = (X = 1: 1;XWX-1))

T and FORM serve to store information in Core storage. In the

function definition is stored and in the, other the definition of

an tput form. SET and DEMAND also use corestorage; both of these cause

e/nutber and its identifier to be stored. Stored commands (indirect ate

are also put into core storage, as clued by the step number preceding h

/

/command. In programming it is often necessary to inspect the info ation

that is being held in core dr to delete some its. The contents o core can

be displayed by -using TYPE commands and deleted by means of Dr TE commands.

Some°example of such TYPE an DELETE commands are given he with comments:

TYPE X

DELETE X

TYPE X(3)

DELETE X(3)

TYPE FORM 3

will print the value of X X is a number or

a list or array, or the d inition'of X if X

is a function.

will delete either a uthber X or a function X.

will print the val e of X
3

.

will delete the single value X
3

from the list X.

will type the definition of Form 3.

DELETE FORM 3 will delete the definition of Form 3.

TYPE STEP 7.1 will p nt the stored command.identified as
Step. 7.1.

DELETE STEP 7.1 will delete Step 7.1.

TYPE PART 29 will print all of the steps in Put 29 in
numeric order.

DELETE PART 29 will delete all of the steps in Part 29.

21

1



4

r.5 a

TYPE will print the entire contents of core.

DELETE AL will delete everything in core storage.

TYPE ALL VALUE wiltprint all numbers lists, and arrays,

TYPE- ALL FORMULAS will krint,A2.1.-fUnctionefinitions.

"TYPE ALL b'.LkAPS

TYPE ALL PARTS

TYPE ALL FORMS'

DELETE ALL VALUES

DELETE ALL FORMULAS

DELETE ALL STEPS

'DELETE ALL PARTS

DELETE ALL FORMS

Both TYPE and-DELETE may be

TYPE X, STEP 3.7,

camas:

J.

s.

used with several arguments, separated by

DELETE STEP 3i7, PART 9, K, F

These are the only two AtD commands that have multiple-argument forms.

N

179.
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File. Commands: USE, FILE& RECALL, and DISCARD

Anything that is stored in core Will be automatically deleted whenever

the user signs off: Any or all of this information can be copied to more

permanent storage space on the disk.

FILE, RECALL, and DISCARD are

files, identified by, integers

in numeric order and the user

a command like

USE FILE-100

- The file number is held

,/ the user signs off), and

41 refer to this file.

To do this, the file commands USE,

used. AID files are variable length disk

from 1 to 2750; The. files need not be used

Specifies which file he wants to use by giying

in core, until another USE command is given (or'until

all subsequept FILE, RECALL, and DISCARD commands

N Each.file is divided into "items," numbered from 1 to 25 and the user

must specify the item when storing or retrieving information. Items need

not be used in numeric order. To file an item, a command like

is given.

definition

FILE PART 7 AS ITEM 3

The user may file a form a step, a part, a value,, a function

qr all of these, using cpmmands similar to the TYPE and DELETE

9

contents of core may be stored as acommand shown just above. The ekrre

single dtem brgiving/a command like

FILE ALL AS ITEM 17

When information is filed on-the disk the contents of

turbed; a copy is made for transfer to the disk.

When the user, wishes to retrieve information from

command like
1

RECALL ITEM

air when he Vishes7 to discard

DISCARD ITEM 17

an item from

23

the file; he

core are not dist

P\4
the file, he uses a

uses a command like

184
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Debugging Commands.-
-

The commands STOP and GO are used primarily for debugging purposes.

STOP is inserted as a temporary command, to le removed when debugging is

complete, and may be used either conditionally or unconditionally to halt

the execution 'of the program at the paint where the STOP command Is en-

countered:

47.3 STOP

47052 STOP IF N > 100-

y, 0

While the program is STOPped, the user may inspect or alter the con-

tents of core, checking current values of variables'used by the program;

replacing, inserting, or deleting steps in the program, etc. To resume

".execution the user gives the direct command

GO

During the time the program is STOPed the user may not execute another

step or part (that is, he cannot give another direct DO commend), at least .

not if he ivishes to resume the execution of the STOPped'program at a later,

time.
O

GO may also be used to restart the execution of.a program that was

halted because of a syntax error. After thee program stop and the, error

message is printed, the user may correct the error and ien resume execution

from that point by giving a direct GO command.

Temporary TYPE commands may- be used tor°delugging purposes. These

'are commando like

32.105 TYPE X, Y, K, N

that are inse d temporarily so that the values of variables will be typed



for inspectiOn.

STOP,commands, are removed by giving DELETE commands:

When debugging is complete, these

K

commands, and temporary'

DELETE STEP1r7.3, STEP 32.105

0

25
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SUmMary of :AID Commands

The following summary of AID commands is given in the form of examples,

with comments. CoMmands that are ordinarily used directly are shown without

step numbers and those that are ordinarily used indirectly are shown with

step numbers; to find out which commands must be used*direAly(or indirectly)

refer to Table 1.

Most of the examples are shown as unconditional commands; however, any

command may be used conditionally (modified by an IF clause) -if desired.

DELETE X /deletes the identifier X and its value.

DETRTE F cleletes the definition of the functionF.

DELETE A(2,3) deletes the element A ftoM the array A:
203

DELETE STEP 7.1 deletes Step 7:1.

DELETE PART 7 deletes all steps in 'Part 7.

DELETE FORM 22 deletes, 'the definition of Form 22.

DELETE K, STEP 4.3 STEP 40+ deletes the three specified items,

DELETE ALL VALUES deletes all real variables and their

values.

DELETE ALL STEPS etc.

DELETE ALL PARTS

DELETE ALL FORMS

rr

__DEIETE_ALL

7:1 DEMAND M requests a value for the real variable M.

2.

.
,

.

. u

DEMAND .A(2,5)
7

reqUesrequest a alue for'the element
of the array A. 3 '

3.7 DEMAND X(I,J,K) requests a value for the element X.
,. .1.1(ilk

of the three - dimensional array X.

16.4 DEMAND X AS "RADIUS" 'requests a value for X by typing
RADIUS

26
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DISCARD ITEM 20

DO STEP 6.2

DO PART 9

DO PART 12, 7 TIMES

DO PART 4 FOR X = 2, 7, 4.3

7.2 DO PART 6, N TIMES

62.15 DO STEP 32.3 FOR A = 5(2)12

discards Item 20 from the previously
designate4 disk file (see USE).

executes Step 6.2.

executes the steps in Part 9 in numeric

order.

executes Part 12, 7 times.

executes Part 4, 3 times, occe,with
X = 2, once with X = 7, and once with

X = 4.at'

executes Part 6 (as a subroutine

times.

executes Step'32.3 once for each of
these values of A: 5, 7, 9, 11; 12.

FILE X AS ITEM 2

FILE A(7,3) AS ITEM 6

FILE FORM 3 AS ITEM 12

FILE STEP 6.25 AS ITEM I

FILE TART 9 AS TTRM

FILE ALL STEPS_AS.ITEM 5

FILE ALL.PARTS AS ITEM 21

FILE ALL FORMS AS'ITEW7

FILE ALLVALUES AS ITEM 14

'FILE ALL AS ITE& 3-

tnote: The item' number must

filet the identifier X and its value
as Itein 2 of the previously designated
disk file (see USE..- H-

be an in ger froin 1 to 25.)

<2
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4 .

RAM 7:

THE LENGTH ,IS - - INCHES MORE THAN THE WIDTH.

defines an output form with allowance
for one value (see TYPE...IN FORvi...) .

FORM 13:

4

FORM 2:

all. 4, defines an output form with a1.1wance
for three values, but no text.

THE COST OF 4- ITEMS IS , 4 4

defines an output form with allowance
for ,two values. Thep first value Will

be rounded to the nearest integer, and

the second value will be rounded to

tap decimal places.,
, g $

k 4' .

Notate, ,The IbAn number must ° be a positA.veointdger less than 109.)
:-- ,. ..,

g °continues kfie. execution of a program
by t, STOP cormatncl or by a syntax

error.-

0,

LET , F(X) 3-x.Xt aefince the function t( ) = 3x5 - 7.
.,

T V(R,H) . 3.14159265*Ht2*H 1ufin.26 'iic function V(r,h) . gr
2
h

,
(lUl.ctioof up to 10 variables may
befinQa). \.

LET F(X) = (X < 0: Xt2 5; X > = 0: X +.5)
defines the function

2x +.5 if x < 0
ti

f(x) )

.x + 5 if x > 0

LET F(X) (X = 1: 1; X F(X-1))

185
ti

defines the recursive function

( 1 if x 1

f(x) =
. x f(x-1) if x > 1

28



RECALL ITEM 7 recalls Item 7 from the previous desig-
nated disk file (see USE).

SET P = 3.14159265

6.35 SW A(5, 7) = 12.31

7.3 SET N = N + 1

X = 4 . 3

L(7) = 2769

assigns the value 344159265 to the
identifier P. 0
assigns the value 12.31 to the element

A5:7
in the array A.

increases the current value of N by 1.

short form
equivalent

Short form
equivalent

of the SET command,
to

SET X = 4.3

of the SET command,
to

SET L(7) = 2769

7.3 STOP

/ 26.64 STOP IF N > M + 1

causes the prograM to stop execution
of Step 7.3 (see GO).

causes the execution ofthe program
to stop at Step 26.64 if N > M + 1.

/ 31.3 TO STEP 31.1 IF N < 100

8.25 TO PART 9

causes a branch to Cteu 31.1 if N < 100

causes an unconditional branch to
Part 9.

TYPE XtY

7.3 TYPE. X, F(X)

129 TYPE "TAX COMPUTATIONS"

TYPE FORM 2

TYPE STEP 3.7-

TYPE PART 5

evaluates x and types the result.

,types the values of X and F(X).
0

types an exact copy of the text
enclosed in quotation marks.

types the definition of Form 2.

types the command stored as Step 3.7.

types all of the commands in Part 5'.

29 186



TYPE ALL STEPS

TYPE ALL PARTS

TYPE ALL.FORVE

TYPE ALL VALUES

TYPE ALL

3.8 TYPE 5*X IN FORM 2 'evaluates 5x and types the teeult in
the specified output on (see FORM) .

'JJSE FILE 100 / -designatek.the disk file to be used
by subsequent FILE, RECALL, and DISCARD
commands.

(Note: The file number must be a positive integer from 1 to g750.)

/

30
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` AID Functions

Zn addition to the function's that may 12e defined by the user by means

of LET commands there are a number of useful standard, AID functions. There

. , . ..

are two trigonometric' functions, SIN(X). and COS(X); X is- in radiana and must
.

,
. . . ,

have an absolute value 'less than 100. The. natural logarithm function LOG(X)

yields the logarithm to the base e of x, where x is any sposit4.,ve real number.

The inverse bf the LOG function is the exponential ftmction.,4XP(X),' equivalent

to e,.
Several functions depend upon features of,t e reptesent'ation or

scientific notation of the argUment:
,

IP(X)., the "integer part" function, yields the

FP(X)

decimal representation of the number x.

7304.

the "fraction part"

.

integer portion of. the

For example, IP(7304:56)

417

function, yields the 'fractional portion of

FP(7304.56)="the decimal representation of the numbei

DP(X), the

)S,

"digit part" function, yields the digital part of the

scientific notationof,4: For example, TP(3789.

eXP(X)0 the !'expronent, part" fun'qt4.on, yields the xponen

scientific natation.; .Fdr example, XF(3789.54)

54) = 3.78954

t part o the

3 si e 3 is.

since' the scientific notation for x'ds 3.78954 ,X. 10.

. -

used as the exponent of 10 in the representation

Two other ,real functions that are occasionally used are

is

(
"sign" function, and SQRT(X), the "square root" function. These are defined

as follows:

3.79514 x

Sgti(x) the

31' 188
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4

1 if x is positive

SON(X) 0 if x is zero
if x is negative

SQRT(X)

-

0

There are.four funct.i.ons on lists of real numl$ers: M1I13 SUM, and

PROD. The forms of,these.are similar, and the -resulting values are, res-

pectively, the maximum of the specified Listwthe minimum, the sum of the

r
numbers in the liAl and the product. Each of these four functions may be' .

used by, simply listing 'the 'numbers of thedargument,:

MIIT(..69, 2/3, .63) has a value of .63

SUM(21 15, 0 4) has a value'of 21
/

The 'list of numbers to be used as an argument may be given by speciryfng a

0

formula and the Values'of the' dummy variable used in the formula:

SUM(I = 2, 10, 3: I * 5) is equivalent to

sqm(2 * 5, 10 * 5, 3 * 5).

The valueS of the variable, may be given in a range specification:

SUM(I. = 5(1)10: 3/1-7)

This expression is equivalent to

1

Similarly, the expression

PROD(J = 0(2)6: Jt2)

is equivalent to

Fr ( .12)

J=0,2,4,40

A



The function FIRST i a ction on an-indexed list.Of Boolean expres-
,

sions. For a specified lis of Boolean expressions, the FIRST function will

yield the index of the rs1 true expression. That is, it will find the

location of the firt true predicate. The form of the FIRST function id

shown in this e e:

FIRST I = 1(1)50: I > 6t2 + 3)

The value of thi expression will be the first value of i in the set

(11'2 / 50).such that i > 62 + 3 (that value is 40):

tnei:simpler function, on Boolean expressions is the function'TV(X)

whi yields either 1 or 0 depending upon whether the Boolean expression X

.

rue" or false. Forexample,the value of TV(2 < 1 OR 5 > 4) is 1.

Forall of the standard AID functions, the values are reel numbers;

hence, these funCtions can be used anyvhere in algebraic exp ions just f

as in ordinary algebraic notation. They may als6 be comb d2a-pd Composed

in the usual ways. Here are a few examples of algeb ic expressions in

ordinary notation and in AID notation:

sin x
cos x

/
sin

2
x

in x

e
2x

Su(x)/COs(k) /7

33



APPENDIX B

i The Form of Programs Written by Students (with Division
6 Equivalence Classes using Four Definitions

.

7v

77
of Program Equivalence)
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APPENDIX C*

The Theory of Diversity and Coherence

'*This appendix io an excerpt from J. E. Friend & M. T. Kane, "Diversity

of Coherence," (in preparation).
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J.

0

Definitions 1 to 5 and Theorems 1 to 7 are standard mathematica,l /

notions and are included for completenes6 and clarity. Defilnitions 6

and it affai Theorems 8 to 17 are also found in the mathematical literature,

but are less well known. In this exposition, all sets are taken to be

countable and.all random variables discrete. In many instances defini-
.

tions and proofs are given only for finite sets, although it is clear

that most of the theorems hold for at least countable )sets.

It is assumed that the reader is familiar with the elem s of
0

statistics, and that he has some acquaintance with set notatici and the

4

basic prpperties of inclusion, union, intersection, and set difference.

Some of the standard theorems that are assumed in the following are:

AUB=BUA
AnB=BnA
A U (BU C) (A B ) U C

A A U B

An Bc_-_AUB

If Ac B and B C then A c C

IfAcBthenAnB-AandAUB=B.

r,

For the cardinality of a set X, the notation N(X) is used, and these

theorems (among others) are assumed:

If A c B then N(A) < N(B)

If A fl B = 43! then N(A) + N(B) = N(A U B)

N(A) + N(B) = N(A U B) - N(A fl B)

f(4)) = 0

2
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(9

The casual reader may wish:to omit proofs. A reader who is familiar

with simple properties of equivalence relations may start reading with.

° the comment preceding Definition 6. The comments are not essential and

may be omitted by any reader.

Definition 1. A classification of Eir set S is a sequence S S S
l' 2/ k

0

with these properties:

(i) Si c-S for each i

(ii) S
1
US

2
U U S

k
S

(iii) S. n s = (0 if i X j
j

Comment. A classification is a means of subdividing-a:set S into-
.

Subsets so that each member of 8-is in one and only one' of the subsets.'

(This definition of classification is similar but not identical, to the

more commonly used partition. In 43 partition, empty sets are not allowedi-

whereas one or more of the sets in a classification may be empty.)

Theorem. 1. Suppose S
12 2'

S. is a classification of S. and that

c S. Ther, S, fl fl s', S, n.s'
-4W

is a classification of S'.

Proof:

proof of (i): SinS!cS' sinceAn B c B for any sets A and B.

714 Proof of (ii): (Sib SI) U (s2 n s') u ... (sk n

(Si U s2 U U k) S' - S n Su. Now S n,81 = s' since S' c S, so

(ii) is established.

Proof' of.(iii): We write Si fl s' as SI for each i < k so that

S1 fl st,s2 fl s' sk fl s' = si,s, S. Thus we have SI fl

(Si (> s') n (si fl s') (Si fl sj) fl a'. 'If i j we have Sis. S. = so
-\

(s. fl s
j

fl) fl s' = (0. Hence, Si ! s!-.
1. j
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Theorem 2. Suppose SlIS2; Sk is a classification of a set S.

Then S1,S2, Sk-1 is a classification of S - S

Proof: For each i < k we have.S. n (s-s
k

) (s. n s) s. n s
k

)

1

Si fl = Si. For i = k, Si n (s-Sk) ,= (Sk n s) - (sk n Sk) = Sk - Sk-= (1)..

Hence, Sl,S2, Sk_1,4 = sl n (s-Sk), 52 n (s-Sk), Sk n (s,sk),

which is a classification of S-S by Theorem 1. It is-easily verified

from the definition of a classification that if S S S 11) is a
2' k'

classification of S.,,so is Sl,S2,... Si,' and the proof is complete.

Theorem 3. Suppose S
1
,S
2' '

S
k

is a classification of a set S.

Then

N(S)

where N(S) is used to denote the ni.i.mber of elements in the set S.

. Proof: The proof is by induction on "c. If c ,.1, then the classi-

fication contains only one set S. By (ii) or Definition 1 S1 = S. Hence,

'k

N(S,) :_ N(Si) __ N(S)
7

r-jNow, assume the theorem is true for n < k. N(S) = N(S
1

U U Sk)

by (ii) and

since

N(S) = N(S1 U S2 U U Sk-1) + N(Sk) -

N((Sa. U S2 U Sk -l) fl S
k

)

N(A U B ) = N(A) + N(B) - N(A n B)

4
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for any.sets A and B. The set (S1 U S2 U U Sk -1) n Sk is empty,

however, since any element in S
k

cannot be in S
i
for i / k by (iii).

Hence, we have

N(S) = N(S1 U S
2

U U ) + N(Sk)

The sequence Sl,,...,
Sk-1

is a classification of the set S - S
k

from

Theorem 2, so

and '

k-1

N(S-S ) ..> N(S i)

i=1

N(S) = N(S-Sk) + N(Sk)
i.1

k

EN(Si) .

Definition 2. An equivalence relation R on a set S is a set of

4

ordered pairs ((xly)) with the following properties:

(i) If (x,y) E R then x e S and y E S.

(ii) If x E S then (x,x) E R.

(iii) If (x,y) E R then (y,x) E R.

(i,v) If (x,y) E R and (y,z) e R then (x,z) E R.

Comment. An equivalence relation contains the pairs (x,y) for which

x is equivalent to y. Thus (i) states that we are concerned only with

pairs from the given set S; (ii), which is known as the reflexive

property, states that every element S is equivalent to itself; (iii)

says that if x is equivalent to y, then is equivalent to x (this is

sometimes phrased 'an equivalence relation is symmetric'. -(iv) states

that if x is equivalent to y and y is equivalent to z, then x is equivalent

to z (t4s is the transitive property, which is shared by a large number

of relations that are not equivalence relations (<, >, c, etc.)).

5 , 50



TheOrem 4. Suppose Sl,S21 ...,-Sk is a classification of S. Then

R =;((xly): x-y e 8 Afar some i such that 1 < i < k) is -an equivalence

relation.

Proof:

Proof of (i):.If (x,y) e R then x e Si and y e Si for,some i. Hence
)

,E Sl US2U...USk andyeSiUS2U...USk. By Definition 1,

S US2U U
k-

S. Hence, x e S and y e S.

Proof of (ii): If x esS then x e Si for some i by (ii) 4Pof Definition'

1. Hence, (x,x) e R.

Proofof(iii):If(x,y).eHthenXeSiandyeS:for some i.

-Hence, y e Si and x e Si so (y,x) e R.

Proof of (1 ): If (x,y) e R and (y-,z) E R then x E Si and y e Si

for some i and y e Si andzeS.forsomej.Hence,yeS.(IS so
. J

Si. fl

Si
is not empty. By (iii) of Definition 1, i = j. Hence, x E Si

and z e S. S, so (x,z) E R.

Comment. From Theorem 4we khow that every classification 'defines'

a unique equivalence relation that i, formed by,taking all possible pairs

from Sl, includlng thw,e of the form (xlx), together with all possible

pairs Trcm.S
2'

etc. The classes S
12

S
2'

.. are known as equivalence

classes. The converse gf Theorem 4 is also true, although it is not

proved here; every equivalence relation defines a classification. (The

classification defined by an equivalence is not unique, because the order

of classes may vary and because one or more empty 'sets are allowed. How -

ever,it is essentially unique, i.e.,' unique up to empty sets and order.)

In the following it may be assumed that every equivalence relation is

defined by means of. some classification.
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n

Theorem 5. Suppose S
1
,8
2'

B is a classification of 5, and
k

((x,y): x,y e 81 for some 1). Thep

I)

N(R)
i

i=1
a 'N

.\Proof: (deferred)

damment. From the above theorem, we' know that the number of'41,ements.
:

equivalence relation is the sum of the squares of the num-',

bers of elements in the equivalence classes. The proof of this theorem

\depends-upOn-Ei more general theorem concerning the number of elements in

the cross product of two sets:

Definition 3. If S and S' are two stts the-cross product of S,X

is (\(xly): x e S and y E 59#

Lemma. N(S X S') = N(S) N(S!)'

Proof: The,proof is by induction On N(S).

If N(S) = 1 then S = (s) for some s and S X S' = Usyy): y e S'Y

Let f(x) = (slx) for x c S'. Then (x) is a one-one correspondence.

between S' and S X S' so NS') = N(S X S'). Since N(S) = 1 we have

N(S X S') = N(S) N(S').

Assume N(S X S') = N(S) N(S') if N(S) < n, and let

S" = s
n
I be a Set with n members. Then S" X S1 = ((x,y): x e S"

and y e SI) = ((x,y): x e S" 7 (sn) and y e S') U.((ejla):-Y e S'), which

is a union of disioint sets since s
n
# S" - (s). Hence,

n.

7
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_N(S" X 81). N((( y); x e S" - (s..) and y e
" /

+ NU(sn,y): y e S'))

= NUS" - (sn)) X SI) + N((sn) X S'),

= N(s".- (sn)) N(S') + N((s)) N(S')

1N(S" - (sn)) + N((sn))1 N(St)

N(S") N(S') .

Proof of Theorem 5. We prove that N(R) =

Let Si x Si = (( ,y): xly E S
i
) be the cross product of S

From the definitions of R and Si X S- it adily-seen tha

RcS
1
XS

1
US

2
XS

2
U...US

k
XS

IC
Suppose (x,y)eSiXS1

US

2_
U U $

k
X S Siheh (x,y) e S X S

i
for some i. Hence,

y e Si so (x,y) E R by the deTinititn of R, and we have shown that

Si X S1 U S2 X S2.0 U Sk X Sk c R. Since the inclusion holds bo h

ways, the two sets are equal.

Now S
i
X

(xly) ESj X Si 'imply that x andy are elemehts of both S and S which

is impossible by (iii) of Definition 1. k

Hence, R,is a union of disjoint sets, so N(R) N(Si

From the lemma; N(Si X Si) = N(Si) N(Si) so

N(R) = > N2(Si)

i=1



k°

Theorem 6. If R c R' then
.2

(S ) <E N2(si) .
7--
i=1 1=1

Proof: Since R c R',

N(R) < N(R') .

k'

< N2(p1) by Theorem 5.

The identity relation I on a set S is ((xx.),..v-k e

an equivalence relation.
/

set S.has n elements the relation I contains n hairs

x) and the classification defned_byI-is n 6ets'of1 the

_farm (x). Under the identity relation no element is equivalent to any

element other than itself. The opposite of this is the universal relation

Ul defined below, under which any two elements in S are equivalent.

Definition 5. The universal relation U on a set S is ((x,y): xlye S).

Theorem 8. U is an equivalence relation.

Comment. If a set S has n members' then U contains n
2

pairs. The

classification defined by U consists of only one subset of S, namely,.

S itself.

Theorem 9. For any equivalence relation R,

IcflcU

Proof: If (x0y) e I then y = x e S. Hence, (x0y) e R. If

,y) e R then x e S and y e S so (xly) E U.

9



q

Comment. Ix) the above theorem, as in many of the following, it is

assumed that all equivalence,relations Are defined on the same set S.

Theorem 10. If R and R' are equivalence relations, then R fl R' is .

an equivalence relation.

Proof (referring to Definition 2):

Proof,0 (i): If (x,5) E R fl R' then (x,y) R so 'x and'y are in S.

Proof' of (ii): IfxeeStkien (x,x)'eRand (x x)eR'. Hence 4

(x,x) E R n R'.

Proof of (iii): If (xly) E R fl then (x,y) E Rand (xly) E RI.

Hence, (y,x) e R and (y,x) c R' so (y,x) e R fl R'.

Proof of (iv): Assume (x0y) e R RI and (y ;z) R fl RI. Then

(x,y) e R and (y,z) e Rso (x,z) E R. Similarly, (x,y) e R'. Hence,

z) E R fl R'.

Comment. Although 11 fl R' is an equivalence relation, it is not

always the case that R U R' is an equivalence relation. However, R U R'

does *satisfy (i), (ii), and (iii) of an equivalence relation. To satisfy .

(iv) we add enough pairs :;o that R U R' is clued under transitivity.

This result we call R 0 R'. to the mathematical literature the set

R 0 R' is called the transitive closure of-E and R'. The reader who is (-

not interested Ln the techhical details of this development may skip to

Theorem 19.

9efinition 6. Given two equivalence relations R and R', the n
th

extension of,R and R', denoted Ext(n), is defined as follows.

(i) EXt(1) = R U R'.

(ii) Ext(n) Ext(n1.1) U ((x,y): 3z such that (x,z) E Ext(11-1) and

(z,y) e Ext(n-1)).

10
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a

Theorem 11.

Ext.(n)

0,

For awn equivalence. e1 ations R and R'0 and for ara n0

Proof: The proof is by induction on n, For n = 10 Ext(n) = R

Assume x e RU RI. then x e R or x e RI. Hence, by Theorem 9, x e U,

and.we conclude that Ext(1) c U.

Assume Ext(n-l) c U. Let (x,y) be a member of Ext(n). Either

(x)y) e Ext(n-1) or (x0y) e t(x,y): such that (x,z) e Ext(n-1) and

(z,50 e Ext(n-1)). If (x,y) E Ext(n-1) then (x,y) e:U by assumption.

Otherwise, (x,z) e Ext(n-l) and (z,y) e Ext(n-1) for some z. By,asiump.-

tion then, 6c,z) e U and (z)y) e U. Hence, x and y are elements of S,

o

nd so (x,y) .e U. Q.E.D.

Theorem 12. N(Ext'(n)) < N(,U) for sy n.

Prof: This follows directly from Theorem 11 and the fact that, for 4

any Sets A and B, if A.c B 'then N(A) < N(B).

Theorem 13. N(Ext(n)) < N(Ext(n +l)) for asy n.,

Proof: From q)efiniion 6, we have Ext(n-I) c:Ext(n) for n > 1.

Comment. Theorem 13 chows that each extension of Rand R' is at

least as large as.the preceding' extension. Theorem 14 states t1hat at.

some point the extensions do nbt become larger.

Theorem 14. For some n, N(Ext(n)) N(Ext(n +l)).

Proof: The sequence 2

'N(Ext(1)), N(EXt(2)), N(Ext(3)),

is a monotonically increasing sequence of integers with an upper bound

11



Comment. Theorem 114 states that at some point some .extensibn of R

and R' is identical in number. to the riext extension. A strOnger result,

below )
is that these two extensions are identical in extent as well as

number.

Theorem 15. For some n, Ext(n) Ext(n+1).
--..._

. Proof: From Theorem 14, there is an n such that N(Ext(n))

N(Ext(n+1)). We now Ext(n) c Ext(n+1) from the definition of Ext, so
t

there is a subset X of Ext(n+1) such that Ext(n+l) - X Ext(n). Then

N(Ext614-1))'- NOC) N(Ext(n)). But'N(X).must be 0 since N(Ext(n))

N(Ext(n+l)) so ,X (1).

-^,

Theorem 16. For any n, R U RI c Ext(n),;.

Proofs The proof is by induction un n. For-q 1, Ext(n) = R U

so R U c E.xt(n).

Assume R U c.---Ext(n1.1). By (ii) of Definitiuti 6; Ext(n-1 ) c Ext(n).,

,Hence, by transitivity of. c we have E U R' Ext(n).

Comment. Tht ,followIng 'theo'rem snows that as soon as the extensions

of E LILA h tFa-_;".r.g., Lti re.,;%11,C, IL; an equiv-

alence% ',natio:. Tr havc added er,,,ugl: pa: n; Lo U R' to form

an equivulence.:: ,
. '

Trajtircm 17. Er Ext(hY Fx.t.(n+.1) then Exi (n) i 3 ran equivalence
......

relation.

Proof (referring to Definition 2).:

Proof of (i): If '(x,y) 4 Ext(n) then (X;57) E LJ 1,y Theorem 8.

Hence, x S and y S.
. ,

,Eiroof of (,A); If.x c S then (x,x) 'c R 13 1 hoe H i.L; an equivalence

relation. Hence, (x",x) E R U by Theorem 13,..(x,x) Ext(n).

32
ti



Proof of (iii): The proof is by induction.

If (x,y) e Ext(1) then (x,y) e R U R' so (x,y)i E R or (x)y) a R'.

If (x,y) e R then (y,x) E R stripe R ivari equivalence relation. Hence,'

(y;x) E R U R' so (y,x) E EXt(1). ]f (x,y) e R' a similar argument holds.

Now assume that (iii) holds for m-1, and let (x,y) be a member of

, Ext(m). If (x;y) E Ext(m-1), thn (y,x) e Ext(m-1) by assumption so

(3f, X) a Ext(m) . If ('x,y) Ext(m-1), then there is a z such that

(x,z) e Ext(m-1) and (z,y) e Ext(m-1). Thep (z;X) and (y,z) are alsq in

Ext(m-1) by assumption's° (y,x) E Ext(m).

Proof (iv): Assum (k,y) E Ext(n) and (y,z) E Ext(n). '(ii)

of Definition 6,,(x,z) E Ext(n+l). But Ext(n) = Ext(n+l) by hypothesis,

4P (x,z) ejEXt(n). D

q
A

4
Comment. Theorem 18 shOlits that once the extensions of R and R' have

.
achieved the status.of an equivalence relation, there are no further

addition's and all of the succeeding extensions are identical.

Theorem 18. ,If Ext(n) is an equivalence relation then Ext(n) = Ext(m)

fpr, any m n.

Proof: The proof is by induction on k = m - n.

If ml- n 0 then Ext(m) Ext(n), which is all that is needed.

Now, assume Ext(m+k) - Ext(n). Then Ext(m +k +L) = Ext(m+k) U ((x,y): 3z

such that (x,z) E Ext(m+k) and (z,y) c ENt(m+k)). We will show that

((x,y): 3z such that (x,z) E Ext(/m +k) and (z,y) E Ext(m+k)) C Ext(m+k).

,et (x,y) be a.member of ((x,y): 3z such that (x,z) E Ext(m+k) and

(i,y)'e Exgm+k)). Then there is a z such that (ix,z) and (z,y) are in

Ext(m+k). By the inductive assumption, (x ) and (z,y) are in Ext(n).

Since Ext(n) is an equivalence relation, ( y) E Ext(n) so (xly) ei,xt(m+k).

I

13
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Comment. We have shown that the sequence of extensions of # and R'

has a limit that is an equivalence relation. This limit is taken to be-

the iuM of R and R'.

Definition 7... The sum od`Atwb equivalence relations, Nand RI,

denoted R 0 R', is Ext(n) for some value of n such that Ext(n) is an

equivalence relation.

Theorem 19. For la R and R', R 0 R' exists and is unique.

Proof: This theorem and proof are for R and R' finite. The exis-

tence of.R 0 R' follows from Theorems 15 and 17, and the uniqueness

follows from Theorem 18.-

Theorem 20. Q is commutative and associate.

Proof: Both of these properties follow from the analogous properties

for U.

Definition 8. Two equivalence relations R a hd R' are independent

in S if there are no x,y e C such that x / y a, (xly) c.R and (x,y) e R'.

Comment'. IfR and R' are independent and x and y are two different

members of S) then x aryl y wil.i riGt be ccpIvident under both R.and RI.

'Theorem "di. R and H' are independent equivalence relations if and,

only if h I.

Proof.

Proof of the forward implication: The proof is by contradiction.."

Assume that Rdnd R' are independent butAirIR' / I. We knowIcRn R'

froM Theorem §, so there Is a pair (x,y) that 'is in R fl R' but not in

I. Since (x,y) X I implies that x / y, we have (x,y) e R and (x)y) E R'

and x / y, which contradicts the assumption thqt k and R' are independent.

The proof of the reverse implication is similar.

114
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Comment. The condition that R fl R' = I is equivalent to the defini-

tion of independence and could have been taken as the definition.

Definition 9. Two equivalence relations A and A' are interactive

in S if there exists x,y e S such that (x,y) E R 0 Al and (x,y) X R and /4.
(x,y) X R'.

Comment. Two equivalence relations are considered to be intera tive

iP 'the combination (sum) has the power to equate two elements that are

not equivalent using either of the relations alone.

,Theorem 22. R and A' are not interactive if.and only if

R 131 . R U Al.

Proof:

Proof of the forward implication: If R and A' are not interactive,

then there is no pair (x,y) such that (x,y) e R 0 R' and .(x,y) X R U A'.

Hence, R 0 R' R U RI. We know from Theorem 16 that R U R' c R 0 RI.

Hence, R U A' R 0 R'.

Proof of the reverse implication: Atsume R and RI are 'interactive.

When there is d pain (x,y) such that (x,y) r R 0 R' and (x,y) R U A'.

'Hence, R 0 R' ,L R U,10.

Theox4em 23. R and R are nut, interactive if and only if R U RI is

:

an equivalence-rellion.

Proof: R and A' are not interactive if and only if R 0 RI A U R'

by Theorem 22. .tly Definition 6, R U R' = Ext(1)-: ,Ay Definition 7.and

Theorem 1,9, R 0 R' . Ext(1) if and only 1,fExt(i) is an equivalenCe

'relation.

CommOnt. Nece:14,1ary and sufficient c()nditions for noninteractivity

are either

15



VS

1

or

(1) R R' .R U 11'
6.

a,

(2) R U R' is an equivalence relation. \\

Either of these conditions. could have/been used to define noninterctivity.

We turn now to notion -of the coherence of_a classified set:

Eefinition 10. Suppose a set (Population) S4s classified

s
11

s
21

S
k

and that the.probability of an element being in equivalence

class S.
pl
..The coherence of the classified set S is defined to be

.

k
.,.

-,,,,
---

--

,._.-

= 1:)

i.1
If

Comment. The value of y depends uppn a specified-classification.

1 ,

If the equivalence relation defined by the classification is RI we some-

times use the notation yR. 'The coherence of a classified set is simply

the probability that two elements drawn at random are in the same equiva -,,

lence class. Corresponding to the population parameter y there is a

sample statistic c.

Definition 11. Suppose a finite set S is 'classified lox

S
11

S
21 /

S
k
and that the correponding equivalence relation is R.

The sample coherence is

c _
(N(S)).

2

N( R)

Comment. The formula for c can also be written-

c -

(N(S.))
2

-

i.1

(N(S))2 .

16

k 2
(N(Si)

1\1('S)

1.1

261



This last formuliktion:shows'moxe clearly the:relation between c and 7,
-

while the formulation used in the definition shows that c is the ratio

of the number of equivalent pairs 'to the nuMber of- possible. pairs. Again

we use c
R

to indicate the dep

relation.

ence on the specified equivalence,

.
For researCh-purposes, c is not a Suitable estimators of 7 because

- ^
it is biased, and we define an estimator c, which we will, later show to

be an unbiased estimator'of 7.

Definition 12. Suppose a set S is classified la S1,S2, Sk

and that the corresponding equivalence relation is R.' The estimated

coherence of. S is

N(R)-N(S)
c NONV(S)-1)

or

^
Comment. c can also be written 43

c -

k

(N(S1))2-N(Si

N(S)(N(S)-1)

N(Si).(N(Si)71)

N(S)(N(S)-1)

From this it can be seen that c is the probability that two elements are

in the same equivalence class when the drawing is without replacement

^
(for c, the drawing is with replacement).' The values of c and c are.

compared inthe following theorems.

Theorem 24. c
r

=
Nk

1--r and c = 0.
sj ---



Proo 4 The Ira of N(I), where"' is the identity relation, is N(S),

theorem follows frOM-4irect substitution into e forMUlas

in.-the definitiofiB c and c.

Theorem 25. = 1.

Proof: For the uniw-ra-rreabltrarrITTIT(TIT:1(XS)}

N S 1.
Theorem. 26. ,c

N

Proof: This can be yeni pled by 'd rect substitution.

Theorem 27. If R and R' e uivalen elations and R c R' then

R
< c

RI
. 'Further

1

R = R' if. and only if
----

c- =,

------- R

Proof: Sine R c R' we have N(R) < N(RL)). 9d, he )
'..,,,

N(R) N(R')

(N(0)2 .(1T(S))2

hti

Since R and R' are defined on the same set-S) it follows that cR < c .

R'

Now-assume R c R' and e
R

= c
R'

Then N(R) = N(R') so R = R'.

and

28. IfIR c R' then cR < cR.

Proof:' pis follow

Theorem 29.

and

n equivalence.. relation R

C, < c

O

< c .
u

Theorem 30. The range of c c (0,1] and the range of c c [0,1].

Comment. Range is used here in the mathematft'al sense: the set of

all values that can be assumed by the function c.' The notation (0)1] is

used to denote the interval from 0 to 1 excluding 0, but including 1.

18
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a

Similarly, [0,1] includes both.0 and 1. From Theorem 29 we see that the

greatest coherence is attained when the universal relation is used.' The

least coherence results from using the identity relation, `under which no

two diff6rent elements are equivalent.

The'bvem 31. c > c for any equivalence-relations
ROR 1 ,

Proof: 'Since R c R R' this follows from Theorem 28.

Theorem 32. If R and R' are not interactive then

c
R

+-c = cR
R'

Proof: For any sets ft and R'

.N(R) + N(R') = N(RUR') N(R(IR')

Since R and R' are not interactive we have from Theorem 22 that

Hence,

so

R 0 R' = R U R',.

N(R) + N(10) = D(R0R') + WPM')

N(R) N(R') N(R010) N(RfIR')

(N(S))2 (N(s))2 (N(s))2 (N(S))2

a.

Since R 0 R' and R n R' are equivalent relations. defined on the same set

as R and RI', we have

c
R

+
d

= + c
R1. dR0R' Rniii

l9

alitat97;



Theorem 33. If R and R' are not interactive,

^ ^
cR = cROR' C

Theor7m 34. If R and R' are independentand not interactive, then

R
+4cR' = c

ROR'

Proof: From Theorem 33 we have

^ ^ ^
o c = c + c
R R' Rnlit

since R and R' are not interactive. Since R and R' are independent,
0'

^ ^
R fl = I by Theorem 21. By Theorem 24 c

I
= 0, and we have c Bniv = 0,

which completes the proof.

Comment. Under the strong hypotheses that R and R' are independent

and are not interactive in S, Theorem 34 shows that the sum of the

coherence due to R and R' is the same as the coherence due to the sum

of R and R'.

/".

Having shown that c has several characteristics that maket a

good measure, we now show that c is also desirable as an estimator of

y. In particular, we show that c is consistent and unbiased. We assume

that the sampling is with replacement.

Theorem 35.* c is an unbiased estimator of y.

Proof: In this'proof we use the following simplified notation:

*The proofs of this and all subsequent theorems were contributed by

Milael Kane.

20
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N = N(S)

'n
i

= N(S.)

so that the formula for.--cbecOmeS

n-N k
n.-n

i=1 i
c _ NTR:TyN(N-1)

i=1

We must show that E(c) = y. Observe that for i = 1,2, ...I E, the random

variable n is binomial with parameters pi and N, so that

Thus

SO

E(ni) = Npi and var(ni) = Npi(1-pi) .

E(4). varNt E2(ni) N(N- p Npi

E(c) = E
i=

n
2-n

N 71:71

. (E(ni2 )-E(ni))
=

i=1
N(N-1)

k
(N(N-1)pi+ i-Npi),

i=1
N(N -l)

k
p2

i=1
i

=y.

21



Definition Let f(N) te a polynomial funct of N.

f(N) = 0(Na) iff he highest power o N in f(N) is less than r equal to a.

Comment. Th notation i roduced in Definition 13 is uses 1 in

examining the as i ptotic properties of functions. In the deve opment

that follows, we are interested in the limiting values of ,poly omia1s in

N, as N approaches infinity. Since f(N) = 0(Na), f(N) does no grow

faster than Na as This implies that 0(Na) for 0 > a.
-4 co IV

Lemma: L- (0 be a set of random variables with a multnomial

disfri u 'on. Let a and 0 be integer constants and let ni and (i

sibl equal to j) be any two random variables from the set ). Then,

for any sample size, N,

E(nC np N
0+0 a.p0

p 0(Na+ft-1l
J

Proof: The proof is by induction on a and S. For a - = 0,

we have frbm,(2) in Theorem 3 5 ,

E(ni) = Npi

Np + 0(N
o)

Npi + 0(1) .

Similarly, the lemma holds for a = 0, v 1. Fox>,a ,

22



E(ninj)
;

n
N 1 nk

n
i j !...nk! P1 ...Pk

-1

N!

N(N-1) p_p.

N(N-1)pipj

N
2
pip - NPiPi

n1 nk

P1 k

(N-2):

n
1
!....(n -1)!...nk!

n
i

n -1

P1 Pi j

n

and since pipj is a constant for any population,

E(ninj) = N2pipj + 0(N) .

Assume that the lemma is true fo'r a and p less than e. For p < e,

n
1

n
k

E(nei nI3j) = ; n
i

0
n
p N!

j ni!...nk! P1 ..Pk

8-1 0 (N.-I)! n1 ni-1 nk
Npi

ni Pj p1 Pi ...Pk
0

the summation ab ve is simply the E(ni njp) for a sample size of N-1,

and e-1 and p both leas than e.

, e-i+p e-1 , e+p2
E n

i
Np (0-1) p p

j
+ OkN )1

23
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/Now

41
(N-1)e-l+D = Ne-l+f3 + o(N

e-1-1
---)

N.
e+D-1 +p-2

+ 0(Ne )

Npi[N
1943-1

Pi Pi
e-1 p N

S+p-2)3

Ne+f3 pe pI3 + o(Ne+19-1) .

So the ltmma holds for a = e, p < e. Similar treatments would show that

the lemma also holds for p = e, a < e and for a = p = e. Therefore the

lemma has been proved.

^
Theorem 36. c is a consistent estimator.

Proof: Since c is an unbiased estimator of 7, we need only slim

that var (c) goes to zero as N .-oo in order to establish the consistency

of c.

var (c) E(c
^2

) - [E(c)]
2

I

21



..s 0

Using the lemma,

O

N20,1)2 (
E n2 2 +0N,

3%
r.

1

(.2; n2 = n2 42 ni,nj)
2 22

4.

n
2 2

N pip +' N3)]
4 2

2 2 .,
pipj + 0(N

3
)

Inserting this in equation 2, we have

pit2

+ 0(N3) .

1
7 2

+ 0(N3)1
2 2 EN4 [ E P2 j

N (N-1)

and inserting this in equation 1, we have

var (2) 1 [NII(E p02 o(N3)1

i
N (1T-1)

1
0(N3)

N2(N-1)
.

25
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, .0

A .
1

,
I

4. 't, ',.. , - ...

. lie var ( c).' !..--. aim .
1

. '

.

-° -.. ,. -", N--).ob .. -N--otb N-( N-
. ,

6

and

' 0:0 .

p

Comment. -A concept closely related to cohereacp
..

Definitidn Sifppose a set 4,S is classified by
.

that the. probability that an element frai S

diversiy of the glassifted;,setSsit

Comment.

and the

5 can also

5 = 1 y .

be,Written "3:

/'

s.

related sample Aatistic is defined

/ix

Definition 15. Suppose alfillite set S is classified la

is in.. =ammo

a.

is diversity.

S
I'

S
2' '

S
k

Si is pi. The

below.

and that the corresponding equivalence relation lis. R, Zhydn the sample

diversity of S is

d

,

. Definition 16. Suppose s finite, set S is classified IZS1,S2

and that the corresponding equivalence relation is R. The estimated

diversity of S is

d c

Comment. Most of the properties. of the coherence measures y,

and c have simple analogies for'5, d and d. The exceptionsaretne
IA

'additivity' theorems, Theorems 33 and 34. Just as c is a consiptent,

unbiased estimator of coherence, pp is d a consistent, unbiased,estimatoW

of 8: 26
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,Theoxem 37. tl is an unbiased, consistent e timator of B.
.

Proof:

^
Therefore d is unbiased,

.

1 - 2

i(a) = 1 - E(c)

= 1

= s.

var (d).= var (1-c)

^
= var (c)

lim var (a) = lim var (c) = 0
N-4 co N-4 co

Therefore d is co istent.

4

27
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